972 resultados para steel structures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat straightening of steel beams on bridges struck by over height trucks has become common practice in recent years in Iowa. A study of the effects of this heat straightening on the steel beams thus straightened is needed. Appropriate samples for mechanical and metallurgical tests were cut from the same rolled beam from the end which was heated and the end which was not heated and the test results were compared. The test results showed beyond doubt that the steel was being heated beyond the permitted temperature and that the impact properties are being drastically reduced by the current method of heat straightening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent reports have indicated that 23.5% of the nation's highway bridges are structurally deficient and 17.7% are functionally obsolete. A significant number of these bridges are on the Iowa secondary road system where over 86% of the rural bridge management responsibilities are assigned to the counties. Some of the bridges can be strengthened or otherwise rehabilitated, but many more are in need of immediate replacement. In a recent investigation (HR-365 "Evaluation of Bridge Replacement Alternatives for the County Bridge System") several types of replacement bridges that are currently being used on low volume roads were identified. It was also determined that a large number of counties (69%) have the ability and are interested in utilizing their own forces to design and construct short span bridges. In reviewing the results from HR-365, the research team developed one "new" bridge replacement concept and a modification of a replacement system currently being used. Both of these bridge replacement alternatives were investigated in this study, the results of which are presented in two volumes. This volume (Volume 1) presents the results of Concept 1 - Steel Beam Precast Units. Concept 2 - Modification of the Beam-in-Slab Bridge is presented in Volume 2. Concept 1, involves the fabrication of precast units (two steel beams connected by a concrete slab) by county work forces. Deck thickness is limited so that the units can be fabricated at one site and then transported to the bridge site where they are connected and the remaining portion of the deck placed. Since Concept 1 bridge is primarily intended for use on low-volume roads, the precast units can be constructed with new or used beams. In the experimental part of the investigation, there were three types of static load tests: small scale connector tests, "handling strength" tests, and service and overload tests of a model bridge. Three finite element models for analyzing the bridge in various states of construction were also developed. Small scale connector tests were completed to determine the best method of connecting the precast double-T (PCDT) units. "Handling strength" tests on an individual PCDT unit were performed to determine the strength and behavior of the precast unit in this configuration. The majority of the testing was completed on the model bridge [L=9,750 mm (32 ft), W=6,400 mm (21 ft)] which was fabricated using the precast units developed. Some of the variables investigated in the model bridge tests were number of connectors required to connect adjacent precast units, contribution of diaphragms to load distribution, influence of position of diaphragms on bridge strength and load distribution, and effect of cast-in-place portion of deck on load distribution. In addition to the service load tests, the bridge was also subjected to overload conditions. Using the finite element models developed, one can predict the behavior and strength of bridges similar to the laboratory model as well as design them. Concept 1 has successfully passed all laboratory testing; the next step is to field test it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project continues the research which addresses the numerous bridge problems on the Iowa secondary road system. It is a continuation (Phase 2) of Project HR-382, in which two replacement alternatives (Concept 1: Steel Beam Precast Units and Concept 2: Modification of the Benton County Beam-in-Slab Bridge) were investigated. In previous research for concept 1, a precast unit bridge was developed through laboratory testing. The steel-beam precast unit bridge requires the fabrication of precast double-tee (PCDT) units, each consisting of two steel beams connected by a reinforced concrete deck. The weight of each PCDT unit is minimized by limiting the deck thickness to 4 in., which permits the units to be constructed off-site and then transported to the bridge site. The number of units required is a function of the width of bridge desired. Once the PCDT units are connected, a cast-in-place reinforced concrete deck is cast over the PCDT units and the bridge railing attached. Since the steel beam PCDT unit bridge design is intended primarily for use on low-volume roads, used steel beams can be utilized for a significant cost savings. In previous research for concept 2, an alternate shear connector (ASC) was developed and subjected to static loading. In this investigation, the ASC was subjected to cyclic loading in both pushout specimens and composite beam tests. Based on these tests, the fatigue strength of the ASC was determined to be significantly greater than that required in typical low volume road single span bridges. Based upon the construction and service load testing, the steel-beam precast unit bridge was successfully shown to be a viable low volume road bridge alternative. The construction process utilized standard methods resulting in a simple system that can be completed with a limited staff. Results from the service load tests indicated adequate strength for all legal loads. An inspection of the bridge one year after its construction revealed no change in the bridge's performance. Each of the systems previously described are relatively easy to construct. Use of the ASC rather than the welded studs significantly simplified the work, equipment, and materials required to develop composite action between the steel beams and the concrete deck.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to upgrade a large number of understrength and obsolete bridges in the U.S. has been well documented in the literature. Through several Iowa DOT projects, the concept of strengthening simple-span bridges by post-tensioning has been developed. The purpose of the project described in this report was to investigate the use of post-tensioning for strengthening continuous composite bridges. In a previous, successfully completed investigation, the feasibility of strengthening continuous, composite bridges by post-tensioning was demonstrated on a laboratory 1/3-scale-model bridge (3 spans: 41 ft 11 in. x 8 ft 8 in.). This project can thus be considered the implementation phase. The bridge selected for strengthening was in Pocahontas County near Fonda, Iowa, on County Road N28. With finite element analysis, a post-tensioning system was developed that required post-tensioning of the positive moment regions of both the interior and exterior beams. During the summer of 1988, the strengthening system was installed along with instrumentation to determine the bridge's response and behavior. Before and after post-tensioning, the bridge was subjected to truck loading (1 or 2 trucks at various predetermined critical locations) to determine the effectiveness of the strengthening system. The bridge, with the strengthening system in place, was inspected approximately every three months to determine any changes in its appearance or behavior. In 1989, approximately one year after the initial strengthening, the bridge was retested to identify any changes in its behavior. Post-tensioning forces were removed to reveal any losses over the one-year period. Post-tensioning was reapplied to the bridge, and the bridge was tested using the same loading program used in 1988. Except for at a few locations, stresses were reduced in the bridge the desired amount. At a few locations flexural stresses in the steel beams are still above 18 ksi, the allowable inventory stress for A7 steel. Although maximum stresses are above the inventory stress by about 2 ksi, they are about 5 ksi below the allowable operating stress; therefore, the bridge no longer needs to be load-posted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Phase I research, Iowa Department of Transportation (IDOT) Project HR-214, "Feasibility Study of Strengthening Existing Single Span Steel Beam Concrete Deck Bridges," verified that post-tensioning can be used to provide strengthening of the composite bridges under investigation. Phase II research, reported here, involved the strengthening of two full-scale prototype bridges - one a prototype of the model bridge tested during Phase I and the other larger and skewed. In addition to the field work, Phase II also involved a considerable amount of laboratory work. A literature search revealed that only minimal data existed on the angle-plus-bar shear connectors. Thus, several specimens utilizing angle-plus-bar, as well as channels, studs and high strength bolts as shear connectors were fabricated and tested. To obtain additional shear connector information, the bridge model of Phase I was sawed into four composite concrete slab and steel beam specimens. Two of the resulting specimens were tested with the original shear connection, while the other two specimens had additional shear connectors added before testing. Although orthotropic plate theory was shown in Phase I to predict vertical load distribution in bridge decks and to predict approximate distribution of post-tensioning for right-angle bridges, it was questioned whether the theory could also be used on skewed bridges. Thus, a small plexiglas model was constructed and used in vertical load distribution tests and post-tensioning force distribution tests for verification of the theory. Conclusions of this research are as follows: (1) The capacity of existing shear connectors must be checked as part of a bridge strengthening program. Determination of the concrete deck strength in advance of bridge strengthening is also recommended. (2) The ultimate capacity of angle-plus-bar shear connectors can be computed on the basis of a modified AASHTO channel connector formula and an angle-to-beam weld capacity check. (3) Existing shear connector capacity can be augmented by means of double-nut high strength bolt connectors. (4) Post-tensioning did not significantly affect truck load distribution for right angle or skewed bridges. (5) Approximate post-tensioning and truck load distribution for actual bridges can be predicted by orthotropic plate theory for vertical load; however, the agreement between actual distribution and theoretical distribution is not as close as that measured for the laboratory model in Phase I. (6) The right angle bridge exhibited considerable end restraint at what would be assumed to be simple support. The construction details at bridge abutments seem to be the reason for the restraint. (7) The skewed bridge exhibited more end restraint than the right angle bridge. Both skew effects and construction details at the abutments accounted for the restraint. (8) End restraint in the right angle and skewed bridges reduced tension strains in the steel bridge beams due to truck loading, but also reduced the compression strains caused by post-tensioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unifying objective of Phases I and II of this study was to determine the feasibility of the post-tensioning strengthening method and to implement the technique on two composite bridges in Iowa. Following completion of these two phases, Phase III was undertaken and is documented in this report. The basic objectives of Phase III were further monitoring bridge behavior (both during and after post-tensioning) and developing a practical design methodology for designing the strengthening system under investigation. Specific objectives were: to develop strain and force transducers to facilitate the collection of field data; to investigate further the existence and effects of the end restraint on the post-tensioning process; to determine the amount of post-tensioning force loss that occurred during the time between the initial testing and the retesting of the existing bridges; to determine the significance of any temporary temperature-induced post-tensioning force change; and to develop a simplified design methodology that would incorporate various variables such as span length, angle-of-skew, beam spacing, and concrete strength. Experimental field results obtained during Phases II and III were compared to the theoretical results and to each other. Conclusions from this research are as follows: (1) Strengthening single-span composite bridges by post-tensioning is a viable, economical strengthening technique. (2) Behavior of both bridges was similar to the behavior observed from the bridges during field tests conducted under Phase II. (3) The strain transducers were very accurate at measuring mid-span strain. (4) The force transducers gave excellent results under laboratory conditions, but were found to be less effective when used in actual bridge tests. (5) Loss of post-tensioning force due to temperature effects in any particular steel beam post-tensioning tendon system were found to be small. (6) Loss of post-tensioning force over a two-year period was minimal. (7) Significant end restraint was measured in both bridges, caused primarily by reinforcing steel being continuous from the deck into the abutments. This end restraint reduced the effectiveness of the post-tensioning but also reduced midspan strains due to truck loadings. (8) The SAP IV finite element model is capable of accurately modeling the behavior of a post-tensioned bridge, if guardrails and end restraints are included in the model. (9) Post-tensioning distribution should be separated into distributions for the axial force and moment components of an eccentric post-tensioning force. (10) Skews of 45 deg or less have a minor influence on post-tensioning distribution. (11) For typical Iowa three-beam and four-beam composite bridges, simple regression-derived formulas for force and moment fractions can be used to estimate post-tensioning distribution at midspan. At other locations, a simple linear interpolation gives approximately correct results. (12) A simple analytical model can accurately estimate the flexural strength of an isolated post-tensioned composite beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Little is known on the occurrence and magnitude of faster than normal (catch-up) growth in response to periods of undernutrition in the wild, and the extent to which different body structures compensate and over what timescales is poorly understood. 2. We investigated catch-up growth in nestling Alpine Swifts, Apus melba, by comparing nestling growth trajectories in response to a naturally occurring 1-week period of inclement weather and undernutrition with growth of nestlings reared in a good year. 3. In response to undernutrition, nestlings exhibited a hierarchy of tissues preservation and compensation, with body mass being restored quickly after the end of the period of undernutrition, acceleration of skeletal growth occurring later in development, and compensation in wing length occurring mostly due to a prolongation of growth and delayed fledging. 4. The effect of undernutrition and subsequent catch-up growth was age-dependent, with older nestlings being more resilient to undernutrition, and in turn having less need to compensate later in the development. 5. This shows that young in a free-living bird population can compensate in body mass and body size for a naturally occurring period of undernutrition, and that the timing and extent of compensation varies with age and between body structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report contains an evaluation and design manual for strengthening and replacing low volume steel stringer and timber stringer bridges. An advisory panel consisting of county and municipal engineers provided direction for the development of the manual. NBI bridge data, along with results from questionnaires sent to county and municipal engineers were used to formulate the manual. Types of structures shown to have the greatest need for cost-effective strengthening methods are steel stringer and timber stringer bridges. Procedures for strengthening these two types of structures have been developed. Various types of replacement bridges have also been included so that the most cost effective solution for a deficient bridge may be obtained. The key results of this study is an extensive compilation, which can be used by county engineers, of the most effective techniques for strengthening deficient existing bridges. The replacement bridge types included have been used in numerous low volume applications in surrounding states, as well as in Iowa. An economic analysis for determining the cost-effectiveness of the various strengthening methods and replacement bridges is also an important part of the manual. Microcomputer spreadsheet software for several of the strengthening methods, types of replacement bridges and for the economic analysis has been developed, documented and presented in the manual. So the manual, Chp. 3 of the final report, can be easily located, blue divider pages have been inserted to delineate the manual from the rest of the report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to upgrade understrength bridges in the United States has been well documented in the literature. The concept of strengthening steel stringer bridges in Iowa has been developed through several Iowa DOT projects. The objective of the project described in this report was to investigate the use of one such strengthening system on a three-span continuous steel stringer bridge in the field. In addition, a design methodology was developed to assist bridge engineers with designing a strengthening system to obtain the desired stress reductions. The bridge selected for strengthening was in Cerro Gordo County near Mason City, Iowa on County Road B65. The strengthening system was designed to remove overstresses that occurred when the bridge was subjected to Iowa legal loads. A two part strengthening system was used: post-tensioning the positive moment regions of all the stringers and superimposed trusses in the negative moment regions of the two exterior stringers at the two piers. The strengthening system was installed in the summers of 1992 and 1993. In the summer of 1993, the bridge was load tested before and after the strengthening system was activated. The load test results indicate that the strengthening system was effective in reducing the overstress in both the negative and positive regions of the stringers. The design methodology that was developed includes a procedure for determining the magnitude of post-tensioning and truss forces required to strengthen a given bridge. This method utilizes moment and force fractions to determine the distribution of strengthening axial forces and moments throughout the bridge. Finite element analysis and experimental results were used in the formulation and calibration of the methodology. A spreadsheet was developed to facilitate the calculation of these required strengthening forces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the Iowa Department of Transportation (Iowa DOT) continuous, steel, welded plate girder bridges have developed web cracking in the negative moment regions at the diaphragm connection plates. The cracks are due to out-of-plane bending of the web near the top flange of the girder. The out-of-plane bending occurs in the "web-gap", which is the portion of the girder web between (1) the top of the fillet welds attaching the diaphragm connection plate to the web and (2) the fillet welds attaching the flange to the web. A literature search indicated that four retrofit techniques have been suggested by other researchers to prevent or control this type of cracking. To eliminate the problem in new bridges, AASHTO specifications require a positive attachment between the connection plate and the top (tension) flange. Applying this requirement to existing bridges is expensive and difficult. The Iowa DOT has relied primarily on the hole-drilling technique to prevent crack extension once cracking has occurred; however, the literature indicates that hole-drilling alone may not be entirely effective in preventing crack extension. The objective of this research was to investigate experimentally a method proposed by the Iowa DOT to prevent cracking at the diaphragm/plate girder connection in steel bridges with X-type or K-type diaphragms. The method consists of loosening the bolts at some connections between the diaphragm diagonals and the connection plates. The investigation included selecting and testing five bridges: three with X-type diaphragms and two with K-type diaphragms. During 1996 and 1997, these bridges were instrumented using strain gages and displacement transducers to obtain the response at various locations before and after implementing the method. Bridges were subjected to loaded test trucks traveling in different lanes with speeds varying from crawl speed to 65 mph (104 km/h) to determine the effectiveness of the proposed method. The results of the study show that the effect of out-of-plane loading was confined to widths of approximately 4 in. (100 mm) on either side of the connection plates. Further, they demonstrate that the stresses in gaps with drilled holes were higher than those in gaps without cracks, implying that the drilling hole technique is not sufficient to prevent crack extension. The behavior of the web gaps in X-type diaphragm bridges was greatly enhanced by the proposed method as the stress range and out-of-plane distortion were reduced by at least 42% at the exterior girders. For bridges with K-type diaphragms, a similar trend was obtained. However, the stress range increased in one of the web gaps after implementing the proposed method. Other design aspects (wind, stability of compression flange, and lateral distribution of loads) must be considered when deciding whether to adopt the proposed method. Considering the results of this investigation, the proposed method can be implemented for X-type diaphragm bridges. Further research is recommended for K-type diaphragm bridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the dramatic increase in the volume of experimental results in every domain of life sciences, assembling pertinent data and combining information from different fields has become a challenge. Information is dispersed over numerous specialized databases and is presented in many different formats. Rapid access to experiment-based information about well-characterized proteins helps predict the function of uncharacterized proteins identified by large-scale sequencing. In this context, universal knowledgebases play essential roles in providing access to data from complementary types of experiments and serving as hubs with cross-references to many specialized databases. This review outlines how the value of experimental data is optimized by combining high-quality protein sequences with complementary experimental results, including information derived from protein 3D-structures, using as an example the UniProt knowledgebase (UniProtKB) and the tools and links provided on its website ( http://www.uniprot.org/ ). It also evokes precautions that are necessary for successful predictions and extrapolations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stream degradation due to steep stream gradients and large deposits of loess soil is a serious problem in western Iowa. One solution to this problem is to construct grade stabilization structures at critical points along the length of the stream. Iowa Highway Research Board project HR-236, "Pottawattamie County Evaluation of Control Structures for Stabilizing Degrading Stream Channels", was initiated in order to study the effectiveness of such structures in preventing stream degradation. This report describes the construction and 4-year performance of a gabion drop structure constructed along Keg Creek during the winter of 1982-83.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of details of the interaction mechanisms of bacterial endotoxins (lipopolysaccharide, LPS) with the oxygen transport protein hemoglobin is still lacking, despite its high biological relevance. Here, a biophysical investigation into the endotoxin:hemoglobin interaction is presented which comprises the use of various rough mutant LPS as well as free lipid A; in addition to the complete hemoglobin molecule from fetal sheep extract, also the partial structure alpha-chain and the heme-free sample are studied. The investigations comprise the determination of the gel-to-liquid crystalline phase behaviour of the acyl chains of LPS, the ultrastructure (type of aggregate structure and morphology) of the endotoxins, and the incorporation of the hemoglobins into artificial immune cell membranes and into LPS. Our data suggest a model for the interaction between Hb and LPS in which hemoglobins do not react strongly with the hydrophilic or with the hydrophobic moiety of LPS, but with the complete endotoxin aggregate. Hb is able to incorporate into LPS with the longitudinal direction parallel to the lipid A double-layer. Although this does not lead to a strong disturbance of the LPS acyl chain packing, the change of the curvature leads to a slightly conical molecular shape with a change of the three-dimensional arrangement from unilamellar into cubic LPS aggregates. Our previous results show that cubic LPS structures exhibit strong endotoxic activity. The property of Hb on the physical state of LPS described here may explain the observation of an increase in LPS-mediating endotoxicity due to the action of Hb.