960 resultados para spleen cell cultured


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In birds and mammals T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T-cell antigen receptors (TCRs). To gain further insight into the evolutionary significance of the γδ T-cell lineage, the present studies sought to define the chicken TCRγ locus. A splenic cDNA library was screened with two polymerase chain reaction products obtained from genomic DNA using primers for highly conserved regions of TCR and immunoglobulin genes. This strategy yielded cDNA clones with characteristics of mammalian TCR γ chains, including canonical residues considered important for proper folding and stability. Northern blot analysis with the TCRγ cDNA probe revealed 1.9-kb transcripts in the thymus, spleen, and a γδ T-cell line, but not in B or αβ T-cell lines. Three multimember Vγ subfamilies, three Jγ gene segments, and a single constant region Cγ gene were identified in the avian TCRγ locus. Members of each of the three Vγ subfamilies were found to undergo rearrangement in parallel during the first wave of thymocyte development. TCRγ repertoire diversification was initiated on embryonic day 10 by an apparently random pattern of V-Jγ recombination, nuclease activity, and P- and N-nucleotide additions to generate a diverse repertoire of avian TCRγ genes early in ontogeny.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low frequency of precursor cells specific for any particular antigen (Ag) makes it difficult to characterize preimmune T cell receptor (TCR) repertoires and to understand repertoire selection during an immune response. We have undertaken a combined adoptive transfer single-cell PCR approach to probe the Ag-specific preimmune repertoires of individual mice. Our strategy was to inject paired irradiated recipient mice with normal spleen cells prepared from individual donors and to compare the TCR repertoires subsequently selected during a CD8 response to a defined model Ag. We found that although some TCRs were shared, the TCR repertoires selected by mice receiving splenocytes from the same donor were not identical in terms of the TCRs selected and their relative frequencies. Our results together with computer simulations imply that individual mice express distinct Ag-specific preimmune TCR repertoires composed of expanded clones and that selection by Ag is a random process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rab11 is a small GTP-binding protein that in cultured mammalian cells has been shown to be concentrated in the pericentriolar endosomal recycling compartment and to play a key role in passage of the recycling transferrin receptor through that compartment [Ullrich, O., Reinsch, S., Urbé, S., Zerial, M. & Parton, R. G. (1996) J. Cell Biol. 135, 913–924]. To obtain insights into the site(s) of action of rab11 within the recycling pathway, we have now compared the effects on recycling at 37°C of overexpression of wild-type rab11 and various mutant forms of this protein in cells that had been loaded with transferrin at either 37°C or 16°C. We show that incubation at 16°C blocks passage of endocytosed transferrin into the recycling compartment and that, whereas the rab11 dominant negative mutant form (S25N) inhibits transferrin recycling after interiorization at either temperature, the wild-type rab11 and constitutively active mutant (Q70L) have no inhibitory effect on the recycling of molecules that were interiorized at 16°C. This differential inhibitory effect shows that two distinct pathways for recycling are followed by the bulk of the transferrin molecules interiorized at the two different temperatures. The incapacity of the constitutively active form of rab11 (Q70L) to inhibit recycling of molecules interiorized at 16°C is consistent with their recycling taking place directly from sorting endosomes, in a process that does not require hydrolysis of GTP on rab11. The fact that the dominant negative (S25N) form of rab11 inhibits recycling of molecules interiorized at both temperatures indicates that activation of rab11 by GTP is required for exit of transferrin from sorting endosomes, regardless of whether this exit is toward the recycling compartment or directly to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cultured renal epithelium (MDCK) and used to determine the velocity of the fluid flow across the tight junction. The flow velocity within the lateral intercellular spaces fell to near zero adjacent to the tight junction, showing that significant transjunctional flow did not occur, even when transepithelial fluid movement was augmented by imposition of osmotic gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe an efficient technique for the selective chemical and biological manipulation of the contents of individual cells. This technique is based on the electric-field-induced permeabilization (electroporation) in biological membranes using a low-voltage pulse generator and microelectrodes. A spatially highly focused electric field allows introduction of polar cell-impermeant solutes such as fluorescent dyes, fluorogenic reagents, and DNA into single cells. The high spatial resolution of the technique allows for design of, for example, cellular network constructions in which cells in close contact with each other can be made to possess different biochemical, biophysical, and morphological properties. Fluorescein, and fluo-3 (a calcium-sensitive fluorophore), are electroporated into the soma of cultured single progenitor cells derived from adult rat hippocampus. Fluo-3 also is introduced into individual submicrometer diameter processes of thapsigargin-treated progenitor cells, and a plasmid vector cDNA construct (pRAY 1), expressing the green fluorescent protein, is electroporated into cultured single COS 7 cells. At high electric field strengths, observations of dye-transfer into organelles are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a method to analyze the relative contributions of pre- and postsynaptic actions of a particular gene product in neurons in culture and potentially in slices using adenovirus-mediated gene transfer. A recombinant virus directed the expression of both a GFP reporter protein and TrkB.T1, a C-terminal truncated dominant negative TrkB neurotrophin receptor. When expressed in the presynaptic cell at synapses between embryonic hippocampal neurons in culture, the dominant negative TrkB.T1 inhibited two forms of synaptic potentiation induced by the neurotrophin brain-derived neurotrophic factor (BDNF): (i) greater evoked synaptic transmission and (ii) higher frequency of spontaneous miniature synaptic currents. These inhibition effects are not seen if the transgene is expressed only in the postsynaptic cell. We conclude that BDNF-TrkB signal transduction in the presynaptic terminal leads to both types of potentiation and is therefore the primary cause of synaptic enhancement by BDNF in these neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The class B, type I scavenger receptor, SR-BI, binds high density lipoprotein (HDL) and mediates the selective uptake of HDL cholesteryl ester (CE) by cultured transfected cells. The high levels of SR-BI expression in steroidogenic cells in vivo and its regulation by tropic hormones provides support for the hypothesis that SR-BI is a physiologically relevant HDL receptor that supplies substrate cholesterol for steroid hormone synthesis. This hypothesis was tested by determining the ability of antibody directed against murine (m) SR-BI to inhibit the selective uptake of HDL CE in Y1-BS1 adrenocortical cells. Anti-mSR-BI IgG inhibited HDL CE-selective uptake by 70% and cell association of HDL particles by 50% in a dose-dependent manner. The secretion of [3H]steroids derived from HDL containing [3H]CE was inhibited by 78% by anti-mSR-BI IgG. These results establish mSR-BI as the major route for the selective uptake of HDL CE and the delivery of HDL cholesterol to the steroidogenic pathway in cultured mouse adrenal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Telomerase activity is readily detected in most cancer biopsies, but not in premalignant lesions or in normal tissue samples with a few exceptions that include germ cells and hemopoietic stem cells. Telomerase activity may, therefore, be a useful biomarker for diagnosis of malignancies and a target for inactivation in chemotherapy or gene therapy. These observations have led to the hypothesis that activation of telomerase may be an important step in tumorigenesis. To test this hypothesis, we studied telomerase activity in isogeneic samples of uncultured and cultured specimens of normal human uroepithelial cells (HUCs) and in uncultured and cultured biopsies of superficial and myoinvasive transitional cell carcinoma (TCC) of the bladder. Our results demonstrated that four of four TCC biopsies, representing both superficial and myoinvasive TCCs, were positive for telomerase activity, but all samples of uncultured HUC were telomerase negative. However, when the same normal HUC samples were established as proliferating cultures in vitro, telomerase activity was readily detected but usually at lower levels than in TCCs. Consistent with the above observation of the telomerase activity in HUCs, telomeres did not shorten during the HUC in vitro lifespan. Demonstration of telomerase in proliferating human epithelial cells in vitro was not restricted to HUCs, because it was also present in prostate and mammary cell cultures. Notably, telomerase activity was relatively low or undetectable in nonproliferating HUC cultures. These data do not support a model in which telomerase is inactive in normal cells and activated during tumorigenic transformation. Rather, these data support a model in which the detection of telomerase in TCC biopsies, but not uncultured HUC samples, reflects differences in proliferation between tumor and normal cells in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been widely reported that the presenilin proteins PS-1 and PS-2 in extracts derived from a variety of cultured cells and from tissues are fragmented extensively by endoproteolytic processing events. It generally has been presumed that this endoproteolysis is a physiologically normal intracellular event following presenilin expression, which might play an important role in the still unknown functions of these molecules in connection with Alzheimer disease. We demonstrate herein, however, that, if a variety of cultured cells and several mouse tissues are examined under conditions minimizing cell trauma, the presenilin molecules in the extracts are found to be intact but that, if the cells and tissues are prepared under somewhat more stressful conditions, the endoproteolytic fragments are then observed. We conclude that these particular endoproteolytic events are not the result of physiologically normal processing of the presenilins but are rather artifacts occurring during the common procedures of specimen preparation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms that underlie the maintenance of and increase in mutant mitochondrial DNA (mtDNA) are central to our understanding of mitochondrial disease. We have therefore developed a technique based on saponin permeabilisation that allows the study of mtDNA synthesis in intact cells. Permeabilisation of cells has been extensively used in an established method both for studying transcription and DNA replication in the nucleus and for measuring respiratory chain activities in mitochondria. We have quantitatively studied incorporation of radiolabelled DNA precursors into mtDNA in human cell lines derived from controls and from patients with mitochondrial DNA disease. Total cell DNA is extracted, restriction digested and Southern blotted, newly synthesised mtDNA being proportional to the label incorporated in each restriction band. A rate of synthesis can then be derived by estimating the relative steady-state mtDNA after probing with full-length mtDNA. Where co-existing mutant and wild-type mtDNA (heteroplasmy) can be distinguished using restriction digestion, their rates of synthesis can be compared within a single cell line. This will be particularly useful in elucidating the pathophysiology of mtDNA diseases in which the distribution of mutant and wild-type mtDNA in cell lines in patient tissues may evolve with time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The positional relationships among all of the visible organelles in a densely packed region of cytoplasm from an insulin secreting, cultured mammalian cell have been analyzed in three dimensions (3-D) at ≈6 nm resolution. Part of a fast frozen/freeze-substituted HIT-T15 cell that included a large portion of the Golgi ribbon was reconstructed in 3-D by electron tomography. The reconstructed volume (3.1 × 3.2 × 1.2 μm3) allowed sites of interaction between organelles, and between microtubules and organellar membranes, to be accurately defined in 3-D and quantitatively analyzed by spatial density analyses. Our data confirm that the Golgi in an interphase mammalian cell is a single, ribbon-like organelle composed of stacks of flattened cisternae punctuated by openings of various sizes [Rambourg, A., Clermont, Y., & Hermo, L. (1979) Am. J. Anat. 154, 455–476]. The data also show that the endoplasmic reticulum (ER) is a single continuous compartment that forms close contacts with mitochondria, multiple trans Golgi cisternae, and compartments of the endo-lysosomal system. This ER traverses the Golgi ribbon from one side to the other via cisternal openings. Microtubules form close, non-random associations with the cis Golgi, the ER, and endo-lysosomal compartments. Despite the dense packing of organelles in this Golgi region, ≈66% of the reconstructed volume is calculated to represent cytoplasmic matrix. We relate the intimacy of structural associations between organelles in the Golgi region, as quantified by spatial density analyses, to biochemical mechanisms for membrane trafficking and organellar communication in mammalian cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclic AMP (cAMP) stimulates the transport of Na+ and Na,K-ATPase activity in the renal cortical collecting duct (CCD). The aim of this study was to investigate the mechanism whereby cAMP stimulates the Na,K-ATPase activity in microdissected rat CCDs and cultured mouse mpkCCDc14 collecting duct cells. db-cAMP (10−3 M) stimulated by 2-fold the activity of Na,K-ATPase from rat CCDs as well as the ouabain-sensitive component of 86Rb+ uptake by rat CCDs (1.7-fold) and cultured mouse CCD cells (1.5-fold). Pretreatment of rat CCDs with saponin increased the total Na,K-ATPase activity without further stimulation by db-cAMP. Western blotting performed after a biotinylation procedure revealed that db-cAMP increased the amount of Na,K-ATPase at the cell surface in both intact rat CCDs (1.7-fold) and cultured cells (1.3-fold), and that this increase was not related to changes in Na,K-ATPase internalization. Brefeldin A and low temperature (20°C) prevented both the db-cAMP-dependent increase in cell surface expression and activity of Na,K-ATPase in both intact rat CCDs and cultured cells. Pretreatment with the intracellular Ca2+ chelator bis-(o-aminophenoxy)-N,N,N′,N′-tetraacetic acid also blunted the increment in cell surface expression and activity of Na,K-ATPase caused by db-cAMP. In conclusion, these results strongly suggest that the cAMP-dependent stimulation of Na,K-ATPase activity in CCD results from the translocation of active pump units from an intracellular compartment to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Select lipid-anchored proteins such as glycosylphosphatidylinositol (GPI)-anchored proteins and nonreceptor tyrosine kinases may preferentially partition into sphingomyelin-rich and cholesterol-rich plasmalemmal microdomains, thereby acquiring resistance to detergent extraction. Two such domains, caveolae and lipid rafts, are morphologically and biochemically distinct, contain many signaling molecules, and may function in compartmentalizing cell surface signaling. Subfractionation and confocal immunofluorescence microscopy reveal that, in lung tissue and in cultured endothelial and epithelial cells, heterotrimeric G proteins (Gi, Gq, Gs, and Gβγ) target discrete cell surface microdomains. Gq specifically concentrates in caveolae, whereas Gi and Gs concentrate much more in lipid rafts marked by GPI-anchored proteins (5′ nucleotidase and folate receptor). Gq, apparently without Gβγ subunits, stably associates with plasmalemmal and cytosolic caveolin. Gi and Gs interact with Gβγ subunits but not caveolin. Gi and Gs, unlike Gq, readily move out of caveolae. Thus, caveolin may function as a scaffold to trap, concentrate, and stabilize Gq preferentially within caveolae over lipid rafts. In N2a cells lacking caveolae and caveolin, Gq, Gi, and Gs all concentrate in lipid rafts as a complex with Gβγ. Without effective physiological interaction with caveolin, G proteins tend by default to segregate in lipid rafts. The ramifications of the segregated microdomain distribution and the Gq-caveolin complex without Gβγ for trafficking, signaling, and mechanotransduction are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we extended the study of genes controlling the formation of specific differentiation structures called “domes” formed by the rat mammary adenocarcinoma cell line LA7 under the influence of DMSO. We have reported previously that an interferon-inducible gene, rat-8, and the β-subunit of the epithelial sodium channel (ENaC) play a fundamental role in this process. Now, we used a proteomic approach to identify proteins differentially expressed either in DMSO-induced LA7 or in 106A10 cells. Two differentially expressed proteins were investigated. The first, tropomyosin-5b, strongly expressed in DMSO-induced LA7 cells, is needed for dome formation because its synthesis inhibition by the antisense RNA technology abolished domes. The second protein, maspin, strongly expressed in the uninduced 106A10 cell line, inhibits dome formation because 106A10 cells, transfected with rat8 cDNA (the function of which is required for the organization of these structures), acquired the ability to develop domes when cultured in presence of an antimaspin antibody. Dome formation in these cultures are accompanied by ENaC β-subunit expression in the absence of DMSO. Therefore, dome formation requires the expression of tropomyosin-5b, in addition to the ENaC β-subunit and the rat8 proteins, and is under the negative control of maspin.