968 resultados para soil depth change
Resumo:
Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.
Resumo:
In recent years, thanks to the technological advances, electromagnetic methods for non-invasive shallow subsurface characterization have been increasingly used in many areas of environmental and geoscience applications. Among all the geophysical electromagnetic methods, the Ground Penetrating Radar (GPR) has received unprecedented attention over the last few decades due to its capability to obtain, spatially and temporally, high-resolution electromagnetic parameter information thanks to its versatility, its handling, its non-invasive nature, its high resolving power, and its fast implementation. The main focus of this thesis is to perform a dielectric site characterization in an efficient and accurate way studying in-depth a physical phenomenon behind a recent developed GPR approach, the so-called early-time technique, which infers the electrical properties of the soil in the proximity of the antennas. In particular, the early-time approach is based on the amplitude analysis of the early-time portion of the GPR waveform using a fixed-offset ground-coupled antenna configuration where the separation between the transmitting and receiving antenna is on the order of the dominant pulse-wavelength. Amplitude information can be extracted from the early-time signal through complex trace analysis, computing the instantaneous-amplitude attributes over a selected time-duration of the early-time signal. Basically, if the acquired GPR signals are considered to represent the real part of a complex trace, and the imaginary part is the quadrature component obtained by applying a Hilbert transform to the GPR trace, the amplitude envelope is the absolute value of the resulting complex trace (also known as the instantaneous-amplitude). Analysing laboratory information, numerical simulations and natural field conditions, and summarising the overall results embodied in this thesis, it is possible to suggest the early-time GPR technique as an effective method to estimate physical properties of the soil in a fast and non-invasive way.
Resumo:
The physicochemical interactions between water, sediment and soil deeply influence the formation and development of the ecosystem. In this research, different freshwater, brackish and saline subaqueous environments of Northern Italy were chosen as study area to investigate the physicochemical processes which occur at the interface between water and sediments, as well as the effects of soil submergence on ecosystem development. In the freshwater system of the Reno river basin, the main purpose was to define the heavy metals hazard in water and sediments of natural and artificial water courses. Heavy metals partitioning and speciation allowed to assess the environmental risk linked to the critical action of dredging canal sediments, for the maintenance of the hydraulic safety of plain lands. In addition, some bioremediation techniques were experimented for protecting sediments from heavy metals contamination, and for giving an answer to the problem of sediments management. In the brackish system of S. Vitale park, the development of hydromorphic and subaqueous soils was investigated. The study of soil profiles highlighted the presence of a soil continuum among pedons subjected to different saturation degrees. This investigation allowed to the identification of both morphological and physicochemical indicators, which characterize the formation of subaqueous soils and describe the soil hydromorphism in transitional soil systems. In the saline system of Grado lagoon, an ecosystem approach was used to define the role of water oscillation in soil characterization and plants colonization. This study highlighted the close relationship and the mutual influence of soil submergence and aeration, tide oscillation and vegetation cover, on the soil development. In view of climate change, this study contribute to understand and suppose how soil and landscape could evolve. However, a complete evaluation of hydromorphic soil functionality will be achieved only involving physiological and biochemical expertise in these kind of studies.
Resumo:
Il telerilevamento rappresenta un efficace strumento per il monitoraggio dell’ambiente e del territorio, grazie alla disponibilità di sensori che riprendono con cadenza temporale fissa porzioni della superficie terrestre. Le immagini multi/iperspettrali acquisite sono in grado di fornire informazioni per differenti campi di applicazione. In questo studio è stato affrontato il tema del consumo di suolo che rappresenta un’importante sfida per una corretta gestione del territorio, poiché direttamente connesso con i fenomeni del runoff urbano, della frammentazione ecosistemica e con la sottrazione di importanti territori agricoli. Ancora non esiste una definizione unica, ed anche una metodologia di misura, del consumo di suolo; in questo studio è stato definito come tale quello che provoca impermeabilizzazione del terreno. L’area scelta è quella della Provincia di Bologna che si estende per 3.702 km2 ed è caratterizzata a nord dalla Pianura Padana e a sud dalla catena appenninica; secondo i dati forniti dall’ISTAT, nel periodo 2001-2011 è stata la quarta provincia in Italia con più consumo di suolo. Tramite classificazione pixel-based è stata fatta una mappatura del fenomeno per cinque immagini Landsat. Anche se a media risoluzione, e quindi non in grado di mappare tutti i dettagli, esse sono particolarmente idonee per aree estese come quella scelta ed inoltre garantiscono una più ampia copertura temporale. Il periodo considerato va dal 1987 al 2013 e, tramite procedure di change detection applicate alle mappe prodotte, si è cercato di quantificare il fenomeno, confrontarlo con i dati esistenti e analizzare la sua distribuzione spaziale.
Resumo:
Die vorliegende Arbeit untersucht die Struktur und Zusammensetzung der untersten Atmosphäre im Rahmen der PARADE-Messkampagne (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) am Kleinen Feldberg in Deutschland im Spätsommer 2011. Dazu werden Messungen von meteorologischen Grundgrößen (Temperatur, Feuchte, Druck, Windgeschwindigkeit und -richtung) zusammen mit Radiosonden und flugzeuggetragenen Messungen von Spurengasen (Kohlenstoffmonoxid, -dioxid, Ozon und Partikelanzahlkonzentrationen) ausgewertet. Ziel ist es, mit diesen Daten, die thermodynamischen und dynamischen Eigenschaften und deren Einfluss auf die chemische Luftmassenzusammensetzung in der planetaren Grenzschicht zu bestimmen. Dazu werden die Radiosonden und Flugzeugmessungen mit Lagrangeschen Methoden kombiniert und es wird zwischen rein kinematischen Modellen (LAGRANTO und FLEXTRA) sowie sogenannten Partikeldispersionsmodellen (FLEXPART) unterschieden. Zum ersten Mal wurde im Rahmen dieser Arbeit dabei auch eine Version von FLEXPART-COSMO verwendet, die von den meteorologischen Analysefeldern des Deutschen Wetterdienstes angetrieben werden. Aus verschiedenen bekannten Methoden der Grenzschichthöhenbestimmung mit Radiosondenmessungen wird die Bulk-Richardson-Zahl-Methode als Referenzmethode verwendet, da sie eine etablierte Methode sowohl für Messungen und als auch Modellanalysen darstellt. Mit einer Toleranz von 125 m, kann zu 95 % mit mindestens drei anderen Methoden eine Übereinstimmung zu der ermittelten Grenzschichthöhe festgestellt werden, was die Qualität der Grenzschichthöhe bestätigt. Die Grenzschichthöhe variiert während der Messkampagne zwischen 0 und 2000 m über Grund, wobei eine hohe Grenzschicht nach dem Durchzug von Kaltfronten beobachtet wird, hingegen eine niedrige Grenzschicht unter Hochdruckeinfluss und damit verbundener Subsidenz bei windarmen Bedingungen im Warmsektor. Ein Vergleich zwischen den Grenzschichthöhen aus Radiosonden und aus Modellen (COSMO-DE, COSMO-EU, COSMO-7) zeigt nur geringe Unterschiede um -6 bis +12% während der Kampagne am Kleinen Feldberg. Es kann allerdings gezeigt werden, dass in größeren Simulationsgebieten systematische Unterschiede zwischen den Modellen (COSMO-7 und COSMO-EU) auftreten. Im Rahmen dieser Arbeit wird deutlich, dass die Bodenfeuchte, die in diesen beiden Modellen unterschiedlich initialisiert wird, zu verschiedenen Grenzschichthöhen führt. Die Folge sind systematische Unterschiede in der Luftmassenherkunft und insbesondere der Emissionssensitivität. Des Weiteren kann lokale Mischung zwischen der Grenzschicht und der freien Troposphäre bestimmt werden. Dies zeigt sich in der zeitlichen Änderung der Korrelationen zwischen CO2 und O3 aus den Flugzeugmessungen, und wird im Vergleich mit Rückwärtstrajektorien und Radiosondenprofilen bestärkt. Das Einmischen der Luftmassen in die Grenzschicht beeinflusst dabei die chemische Zusammensetzung in der Vertikalen und wahrscheinlich auch am Boden. Diese experimentelle Studie bestätigt die Relevanz der Einmischungsprozesse aus der freien Troposphäre und die Verwendbarkeit der Korrelationsmethode, um Austausch- und Einmischungsprozesse an dieser Grenzfläche zu bestimmen.
Resumo:
The study was arranged to manifest its objectives through preceding it with an intro-duction. Particular attention was paid in the second part to detect the physical settings of the study area, together with an attempt to show the climatic characteristics in Libya. In the third part, observed temporal and spatial climate change in Libya was investigated through the trends of temperature, precipitation, relative humidity and cloud amount over the peri-ods (1946-2000), (1946-1975), and (1976-2000), comparing the results with the global scales. The forth part detected the natural and human causes of climate change concentrat-ing on the greenhouse effect. The potential impacts of climate change on Libya were ex-amined in the fifth chapter. As a case study, desertification of Jifara Plain was studied in the sixth part. In the seventh chapter, projections and mitigations of climate change and desertification were discussed. Ultimately, the main results and recommendations of the study were summarized. In order to carry through the objectives outlined above, the following methods and approaches were used: a simple linear regression analysis was computed to detect the trends of climatic parameters over time; a trend test based on a trend-to-noise-ratio was applied for detecting linear or non-linear trends; the non-parametric Mann-Kendall test for trend was used to reveal the behavior of the trends and their significance; PCA was applied to construct the all-Libya climatic parameters trends; aridity index after Walter-Lieth was shown for computing humid respectively arid months in Libya; correlation coefficient, (after Pearson) for detecting the teleconnection between sun spot numbers, NAOI, SOI, GHGs, and global warming, climate changes in Libya; aridity index, after De Martonne, to elaborate the trends of aridity in Jifara Plain; Geographical Information System and Re-mote Sensing techniques were applied to clarify the illustrations and to monitor desertifi-cation of Jifara Plain using the available satellite images MSS, TM, ETM+ and Shuttle Radar Topography Mission (SRTM). The results are explained by 88 tables, 96 figures and 10 photos. Temporal and spatial temperature changes in Libya indicated remarkably different an-nual and seasonal trends over the long observation period 1946-2000 and the short obser-vation periods 1946-1975 and 1976-2000. Trends of mean annual temperature were posi-tive at all study stations except at one from 1946-2000, negative trends prevailed at most stations from 1946-1975, while strongly positive trends were computed at all study stations from 1976-2000 corresponding with the global warming trend. Positive trends of mean minimum temperatures were observed at all reference stations from 1946-2000 and 1976-2000, while negative trends prevailed at most stations over the period 1946-1975. For mean maximum temperature, positive trends were shown from 1946-2000 and from 1976-2000 at most stations, while most trends were negative from 1946-1975. Minimum tem-peratures increased at nearly more than twice the rate of maximum temperatures at most stations. In respect of seasonal temperature, warming mostly occurred in summer and au-tumn in contrast to the global observations identifying warming mostly in winter and spring in both study periods. Precipitation across Libya is characterized by scanty and sporadically totals, as well as high intensities and very high spatial and temporal variabilities. From 1946-2000, large inter-annual and intra-annual variabilities were observed. Positive trends of annual precipi-tation totals have been observed from 1946-2000, negative trends from 1976-2000 at most stations. Variabilities of seasonal precipitation over Libya are more strikingly experienced from 1976-2000 than from 1951-1975 indicating a growing magnitude of climate change in more recent times. Negative trends of mean annual relative humidity were computed at eight stations, while positive trends prevailed at seven stations from 1946-2000. For the short observation period 1976-2000, positive trends were computed at most stations. Annual cloud amount totals decreased at most study stations in Libya over both long and short periods. Re-markably large spatial variations of climate changes were observed from north to south over Libya. Causes of climate change were discussed showing high correlation between tempera-ture increasing over Libya and CO2 emissions; weakly positive correlation between pre-cipitation and North Atlantic Oscillation index; negative correlation between temperature and sunspot numbers; negative correlation between precipitation over Libya and Southern Oscillation Index. The years 1992 and 1993 were shown as the coldest in the 1990s result-ing from the eruption of Mount Pinatubo, 1991. Libya is affected by climate change in many ways, in particular, crop production and food security, water resources, human health, population settlement and biodiversity. But the effects of climate change depend on its magnitude and the rate with which it occurs. Jifara Plain, located in northwestern Libya, has been seriously exposed to desertifica-tion as a result of climate change, landforms, overgrazing, over-cultivation and population growth. Soils have been degraded, vegetation cover disappeared and the groundwater wells were getting dry in many parts. The effect of desertification on Jifara Plain appears through reducing soil fertility and crop productivity, leading to long-term declines in agri-cultural yields, livestock yields, plant standing biomass, and plant biodiversity. Desertifi-cation has also significant implications on livestock industry and the national economy. Desertification accelerates migration from rural and nomadic areas to urban areas as the land cannot support the original inhabitants. In the absence of major shifts in policy, economic growth, energy prices, and con-sumer trends, climate change in Libya and desertification of Jifara Plain are expected to continue in the future. Libya cooperated with United Nations and other international organizations. It has signed and ratified a number of international and regional agreements which effectively established a policy framework for actions to mitigate climate change and combat deserti-fication. Libya has implemented several laws and legislative acts, with a number of ancil-lary and supplementary rules to regulate. Despite the current efforts and ongoing projects being undertaken in Libya in the field of climate change and desertification, urgent actions and projects are needed to mitigate climate change and combat desertification in the near future.
Resumo:
Current climate change models predict significant changes in rainfall patterns across Europe. To explore the effect of drought on soil CO2 efflux (FSoil) and on the contribution of litter to FSoil we used rain shelters to simulate a summer drought (May to July 2007) in an intensively managed grassland in Switzerland by reducing annual precipitation by around 30% similar to the hot and dry year 2003 in Central Europe. We added 13C-depleted as well as unlabelled grass/clover litter to quantify the litter-derived CO2 efflux (FLitter). Soil CO2 efflux and the 13C/12C isotope ratio (δ13C) of the respired CO2 after litter addition were measured during the growing season 2007. Drought significantly decreased FSoil in our litter addition experiment by 59% and FLitter by 81% during the drought period itself (May to July), indicating that drought had a stronger effect on the CO2 release from litter than on the belowground-derived CO2 efflux (FBG, i.e. soil organic matter (SOM) and root respiration). Despite large bursts in respired CO2 induced by the rewetting after prolonged drought, drought also reduced FSoil and FLitter during the entire 13C measurement period (April to October) by 26% and 37%, respectively. Overall, our findings show that drought decreased FSoil and altered its seasonality and its sources. Thus, the C balance of temperate grassland soils respond sensitively to changes in precipitation, a factor that needs to be considered in regional models predicting the impact of climate change on ecosystems C balance.
Resumo:
The potential for changes in hydraulic conductivity, k, of two model soil-bentonite (SB) backfills subjected to wet-dry cycling was investigated. The backfills were prepared with the same base soil (clean, fine sand) but different bentonite contents (2.7 and 5.6 dry wt %). Saturation (S), volume change, and k of consolidated backfill specimens (effective stress = 24 kPa) were evaluated over three to seven cycles in which the matric suction, Ym, in the drying stage ranged from 50 to 700 kPa. Both backfills exhibited susceptibility to degradation in k caused by wet-dry cycling. Mean values of k for specimens dried at Ym = 50 kPa (S = 30-60 % after drying) remained low after two cycles, but increased by 5- to 300-fold after three or more cycles. Specimens dried at Ym ≥ 150 kPa (S < 30 % after drying) were less resilient and exhibited 500- to 10 000-fold increases in k after three or more cycles. The greater increases in k for these specimens correlated with greater vertical shrinkage upon drying. The findings suggest that increases in hydraulic conductivity due to wet-dry cycling may be a concern for SB vertical barriers located within the zone of a fluctuating groundwater table.
Resumo:
Like other mountain areas in the world, the Hindu Kush-Himalayan (HKH) region is particularly vulnerable to climate change. Ongoing climate change processes are projected to have a high impact on the HKH region, and accelerated warming has been reported in the Himalayas. These climate change impacts will be superimposed on a variety of other environmental and social stresses, adding to the complexity of the issues. The sustainable use of natural resources is crucial to the long-term stability of the fragile mountain ecosystems in the HKH and to sustain the socio-ecological resilience that forms the basis of sustainable livelihoods in the region. In order to be prepared for these challenges, it is important to take stock of previous research. The ‘People and Resource Dynamics Project’ (PARDYP), implemented by International Centre for Integrated Mountain Development (ICIMOD), provides a variety of participatory options for sustainable land management in the HKH region. The PARDYD project was a research for development project that operated in five middle mountain watersheds across the HKH – two in Nepal and one each in China, India, and Pakistan. The project ran from 1996 to 2006 and focused on addressing the marginalisation of mountain farmers, the use and availability of water, issues relating to land and forest degradation and declining soil fertility, the speed of regeneration of degraded land, and the ability of the natural environment to support the growing needs of the region’s increasing population. A key learning from the project was that the opinion of land users is crucial to the acceptance (and, therefore, successful application) of new technologies and approaches. A major challenge at the end of every project is to promote knowledge sharing and encourage the cross-fertilization of ideas (e.g., in the case of PARDYP, with other middle mountain inhabitants and practitioners in the region) and to share lessons learned with a wider audience. This paper will highlight how the PARDYP findings, including ways of addressing soil fertility and water scarcity, have been mainstreamed in the HKH region through capacity building (international, regional, and national training courses), networking, and the provision of backstopping services. In addition, in view of the challenges in watershed management in the HKH connected to environmental change, the lessons learned from the PARDYP are now being used by ICMOD to define and package climate change proof technology options to address climate change adaptation.
Resumo:
Impacts of low-latitude, explosive volcanic eruptions on climate and the carbon cycle are quantified by forcing a comprehensive, fully coupled carbon cycle-climate model with pulse-like stratospheric aerosol optical depth changes. The model represents the radiative and dynamical response of the climate system to volcanic eruptions and simulates a decrease of global and regional atmospheric surface temperature, regionally distinct changes in precipitation, a positive phase of the North Atlantic Oscillation, and a decrease in atmospheric CO2 after volcanic eruptions. The volcanic-induced cooling reduces overturning rates in tropical soils, which dominates over reduced litter input due to soil moisture decrease, resulting in higher land carbon inventories for several decades. The perturbation in the ocean carbon inventory changes sign from an initial weak carbon sink to a carbon source. Positive carbon and negative temperature anomalies in subsurface waters last up to several decades. The multi-decadal decrease in atmospheric CO2 yields a small additional radiative forcing that amplifies the cooling and perturbs the Earth System on longer time scales than the atmospheric residence time of volcanic aerosols. In addition, century-scale global warming simulations with and without volcanic eruptions over the historical period show that the ocean integrates volcanic radiative cooling and responds for different physical and biogeochemical parameters such as steric sea level or dissolved oxygen. Results from a suite of sensitivity simulations with different magnitudes of stratospheric aerosol optical depth changes and from global warming simulations show that the carbon cycle-climate sensitivity γ, expressed as change in atmospheric CO2 per unit change in global mean surface temperature, depends on the magnitude and temporal evolution of the perturbation, and time scale of interest. On decadal time scales, modeled γ is several times larger for a Pinatubo-like eruption than for the industrial period and for a high emission, 21st century scenario.
Resumo:
This study examined the chemical compatibility of several model soil-bentonite(SB) backfills with an inorganic salt solution (CaCl2). First, bentonite-water slurry was created using a natural sodium-bentonite, as well as two modified bentonites –multiswellable bentonite (MSB) and a “salt-resistant” bentonite (SW101). Once slurries that met typical construction specifications had been created using the various bentonites,the model SB backfills were prepared for each type of bentonite. These backfills werealso designed to meet conventional construction and design requirements. The SB backfills were then subjected to permeation with tap water and/or CaCl2 solutions of various concentrations in order to evaluate the compatibility of the SB backfills with inorganic chemicals. The results indicate that SB backfill experiences only minor compatibility issues (i.e., no large differences between the hydraulic conductivity of the SB backfill to tap water and CaCl2) compared to many other types of clay barriers. In addition, SB backfills show no major change in final hydraulic conductivity to CaCl2 when permeated with tap water before CaCl2 versus being permeated with CaCl2 directly. These results may be due to the ability of the bentonite in the SB backfills to undergo osmotic swelling before permeation begins, and the inability of the CaCl2 solutions to undo the osmotic swelling. Similar results were obtained for all three clays tested, and while MSB did show less compatibility issues than the natural bentonite and SW101, it appears that the differences in performance may generally be negligible. Overall, thisstudy makes a significant addition to the understanding of SB cutoff wall compatibility.
Resumo:
This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.
Resumo:
The recent increase in the amount of nanoparticles incorporated into commercial products is accompanied by a rising concern of the fate of these nanoparticles. Once released into the environment, it is inevitable that the nanoparticles will come into contact with the soil, introducing them to various routes of environmental contamination. One route that was explored in this research was the interaction between nanoparticles and clay minerals. In order to better define the interactions between clay minerals and positively charged nanoparticles, in situ atomic force microscopy (AFM) was utilized. In situ AFM experiments allowed interactions between clay minerals and positively charged nanoparticles to be observed in real time. The preliminary results demonstrated that in situ AFM was a reliable technique for studying the interactions between clay minerals and positively charged nanoparticles and showed that the nanoparticles affected the swelling (height) of the clay quasi-crystals upon exposure. The preliminary AFM data were complemented by batch study experiments which measured the absorbance of the nanoparticle filtrate after introduction to clay minerals in an effort to better determine the mobility of the positively charged nanoparticles in an environment with significant clay contribution. The results of the batch study indicated that the interactions between clay minerals and positively charged nanoparticles were size dependent and that the interactions of the different size nanoparticles with the clay may be occurring to different degrees. The degree to which the different size nanoparticles were interacting with the clay was further probed using FTIR (Fourier transform infrared) spectroscopy experiments. The results of these experiments showed that interactions between clay minerals and positively charged nanoparticles were size dependent as indicated by a change in the FTIR spectra of the nanoparticles upon introduction to clay.
Resumo:
The expansion of agriculture in the Near East during the middle Holocene significantly altered the physical landscape. However, the relationship between the scale of agriculture and the magnitude and timing of the environmental impacts is not well known. The Gordion Regional Survey provides a novel dataset to compare settlement density during archaeological periods to rates of environmental disruption. Sediment samples from alluvial cores directly date the environmental disruption, which can be matched to period-specific settlement intensities in the watershed as constructed from archaeological survey ceramics. Degradation rates rose sharply within a millennium of the earliest Chalcolithic occupation. Early Bronze Age (EBA) land use induced the greatest rates of environmental degradation, although settlement density was relatively low on the landscape. The degradation rate subsequently decreased to one-third its early peak by the Iron Age, even as settlement intensity climbed. This trajectory reveals how complex interaction effects can amplify or subdue the responses of the landscape-land use system. Prior to settlement, landscape soil reservoirs were highly vulnerable, easily tipped by early agricultural expansion. Subsequent reduced rates of erosion are tied both to changes in sociopolitical organization and to depletion of the vulnerable soil supply.
Resumo:
A lacustrine sediment core from Fiddaun, western Ireland was studied to reconstruct summer temperature changes during the Weichselian Lateglacial. This site is located close to the Atlantic Ocean; and so is potentially sensitive to climatic changes associated with changes in ocean circulation. The record, comprising the end of the Weichselian Pleniglacial to the early Holocene, was analysed for fossil chironomids, lithology, and oxygen and carbon isotopes in the sedimentary carbonates. These proxies clearly show rapid warming at the onset of the Lateglacial Interstadial, relatively high summer temperatures during the Interstadial, pronounced cooling during the Younger Dryas, and subsequent warming at the transition to the Holocene. Chironomid-inferred mean July air temperatures for the Interstadial are ~12.5–14.5 °C, ~7.5 °C for the Younger Dryas, and ~15.0 °C for the early Holocene. Furthermore, this research provides evidence for at least two cold events during the Interstadial. These more moderate temperature oscillations can be correlated to Greenland Interstadial events 1b and 1d, on the basis of the age-depth model for the Fiddaun sequence. Based on multiple proxies, the first cold oscillation (GI-1d) was the more severe of the two in Ireland.