1000 resultados para size
FLUCTUATION OF SIZE-FRACTIONATED ALKALINE PHOSPHATASE AFTER BLOOM DISAPPEARANCE IN TWO SHALLOW PONDS
Resumo:
The temporal and vertical fluctuations of size fractionated alkaline phosphatase activity (APA) and kinetics parameters as well as orthophosphate (o-P) and chlorophyll concentrations were investigated after bloom disappearance in two shallow ponds A and B from 27 October 2001 to 15 April 2002. Pond A (Microcystis) bloomed seriously but pond B did not. The data of o-P and chlorophyll suggested that phosphorus was the principal limiting nutrimental element and its vertical flux should be regarded as an important driving factor for algal growth. In pond A, the accumulation of algae-derived detritus after bloom disappearance in overlying water stimulated excretion of algal fraction APA, mainly produced by attached bacteria responsible for detritus decomposition, whereas bacterial fraction APA preferred to function in surface water. Interestingly, completely contrary phenomena were observed in pond B. In season, even though no obvious difference for size-fractionated APA in both ponds, the total APA in pond A peaked earlier showing higher activity and efficiency (low K-m and high V-max values) as a result of algal-derived detritus input. In summary, it is suggested that the excretion of alkaline phosphatase with strongly catalyzing efficiency and high activity should be taken as important contributor to algal-derived detritus decomposition, further fueling nutrient recycle and accelerating algal development next year. Furthermore, some inhibitors and surfactants were testified to be good tools to identify the origin of dissolved alkaline phosphatase.
Resumo:
In order to elucidate the vertical distributions of iron in three typical bays (Haigeng bay, Macun bay and Haidong bay) of Lake Dianchi (China), the investigation was conducted on March, 2003. Results showed that the vertical distributions were influenced by monsoon, cyanobacterial bloom and water depth as well as sediment resuspension, which indicated that their translocations and transformations were decided by geographical and physical as well as chemical and biological characteristics.
Resumo:
We report the fabrication of a mechanically-flexible 16×16 array of thin-film, micron-size LEDs emitting at 480 nm. Devices were transfer-printed onto a mechanically-flexible ITO backplane using a modified, high-precision (placement accuracy ±25 nm) assembly system. © 2013 IEEE.
Resumo:
© 2014 AIP Publishing LLC. Superparamagnetic nanoparticles are employed in a broad range of applications that demand detailed magnetic characterization for superior performance, e.g., in drug delivery or cancer treatment. Magnetic hysteresis measurements provide information on saturation magnetization and coercive force for bulk material but can be equivocal for particles having a broad size distribution. Here, first-order reversal curves (FORCs) are used to evaluate the effective magnetic particle size and interaction between equally sized magnetic iron oxide (Fe2O3) nanoparticles with three different morphologies: (i) pure Fe2O3, (ii) Janus-like, and (iii) core/shell Fe2O3/SiO2synthesized using flame technology. By characterizing the distribution in coercive force and interaction field from the FORC diagrams, we find that the presence of SiO2in the core/shell structures significantly reduces the average coercive force in comparison to the Janus-like Fe2O3/SiO2and pure Fe2O3particles. This is attributed to the reduction in the dipolar interaction between particles, which in turn reduces the effective magnetic particle size. Hence, FORC analysis allows for a finer distinction between equally sized Fe2O3particles with similar magnetic hysteresis curves that can significantly influence the final nanoparticle performance.
Resumo:
This paper reports large variations in stable carbon and nitrogen isotope ratios of lake anchovy (Coilia ectenes taihuensis) from Lake Chaohu, China. The lake anchovy exhibited a significant C-13- and N-15- enrichment in relation to increasing fish length, and the isotopic compositions of small lake anchovy (<= 130 mm) were significantly more enriched than those of large lake anchovy (> 130 mm). The significant differences in the isotopic compositions of small and large lake anchovy suggested that their assimilated diets differed over a period of time and reflected the size-related diet shift of this fish. Bellamya aeruginosa and Corbicula fluminea were used to establish the baseline carbon signal of benthic and pelagic food webs, and these data were used to parameterize a 2-source mixing model to estimate in consumers the contribution of carbon derived from benthic versus pelagic food webs. Mixing models showed that small lake anchovy derived only 37% of their carbon from benthic food web, indicating increased reliance on pelagic prey, whereas benthic prey contributed 71% of large lake anchovy diet, suggesting greater use of benthic sources. These data indicate that there was a change in lake anchovy feeding strategy related to their size, suggesting a role in dynamic coupling between pelagic and benthic food chains. The trophic position of small lake anchovy averaged 3.0, indicating a zooplankton-based diet, compared with 3.6 in large lake anchovy, indicative of an increase in piscivorous diet. Overlap in the isotopic compositions of small and large lake anchovy probably indicated that these fish occasionally shared common diets, as suggested by stomach content studies, and/or resulted from the differences in the rate of isotopic turnover depending on differences in growth rate and metabolic turnover between small and large anchovy during diet shift from pelagic to benthic food webs. This study presents the contributions of benthic and pelagic food webs supporting lake anchovy and indicates that the intraspecific isotopic dynamic should be considered when applying stable isotope analyses to infer trophic interactions in aquatic ecosystems.
Resumo:
Successful applications of expanded bed adsorption (EBA) technology have been widely reported in the literature for protein purification. Little has been reported on the recovery of natural products and active components of Chinese herbal preparations using EBA technology. In this study, the hydrodynamic behavior in an expanded bed of cation resin, 001 x 7 Styrene-DVB, was investigated. Ephedrine hydrochloride (EH) was used as a model natural product to test the dynamic binding capacity (DBC) in the expanded bed. EBA of EH directly from a feedstock containing powdered herbs has also been investigated. These particles are different from commercially available expanded bed adsorbents by virtue of their large size (20S to 1030 gm). When the adsorbent bed is expanded to approximately 1.3 to 1.5 times its settled bed height, the axial liquid-phase dispersion coefficient was found to be of the order 10(-5) m(2) s(-1), which falls into the range 1.0 x 10(-6) to 1.0 X 10(-5) m(2) s(-1) observed previously in protein purification. Because of the favorable column efficiency (low axial dispersion coefficient), the recovery yield and purification factor values of EH directly from a feedstock reached 86.5% and 18, respectively. The results suggest that EBA technology holds promise for the recovery of natural products and active components of Chinese herbal preparations.
Resumo:
Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.
Resumo:
Crustacean zooplankton size structure in 27 aquaculture lakes was studied to test the hypothesis that larger size structure is associated with higher grazing pressure. Mean body length of crustaceans was positively correlated with increasing Chl a (r(2) = 0.40, P = 0.000) and TP (r(2) = 0.38, P = 0.000), contrary to the empirical studies. However, the ratio of zooplankton to phytoplankton biomass decreased significantly with increasing TP (r(2) = 0.27, P = 0.005) and mean body length (r(2) = 0.46, P = 0.000). Meanwhile, size structure showed no significant effect in explaining residual variations of phosphorus-chlorophyll relationship (P = 0.231). These results indicate that larger size structure was not always associated with higher zooplankton grazing pressure. It is likely that in aquaculture lakes crustacean zooplankton size structure was of minor importance in control of phytoplankton biomass, and it was mainly regulated by fish predation. The results showed in our study and the empirical studies might be a reflection of two different stages of lake eutrophication and fish predation intensity.
Resumo:
To observe changes in the concentrations of size-fractionated iron and related environmental factors, experiments were conducted in the northeastern part of the shallow eutrophic lake Dianchi (China) from March 2003 to February 2004. Iron concentrations were measured for three size fractions: particulate iron (phi >0.22 mu m), colloidal iron (phi = 0.025-0.22 mu m) and soluble iron (phi < 0.025 mu m), and environmental factors (physicochemical and biological factors) were synchronously analyzed. Results showed that size-fractionated iron and the related environmental factors all varied with season. Colloidal iron accounted for only 5-9% of total iron, while particulate and soluble iron each accounted for 40-50% of total iron. The results suggested that size-fractionated iron can transform into each other, especially the highly reactive colloidal iron. Significant linear correlations were found between iron in different size fractions, and significant correlations were also obtained between chlorophyll a and environmental factors, such as TN, TP and secchi depth. No significant correlation between iron and chlorophyll a was found in this study.
Resumo:
The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.
Resumo:
The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of China's Yangtze River at intervals of 100-150 m to record sonar. signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation. (C) 2005 Acoustical Society of America.
Resumo:
Algal size can affect the rate of metabolism and of growth. Different sized colonies of Nostoc sphaeroides were used with the aim of determining the effects of colony size on photosynthetic physiology and growth. Small colonies showed higher maximum photosynthetic rates per unit chlorophyll, higher light saturation point, and higher photosynthetic efficiency (a) than large colonies. Furthermore, small colonies had a higher affinity for DIC and higher DIC-saturated photosynthetic rates. In addition, small colonies showed higher photosynthetic rates from 5-45degreesC than large colonies. There was a greater decrease in Fv/Fm after exposure to high irradiance and less recovery in darkness for large colonies than for small colonies. Relative growth rate decreased with increasing colony size. Small colonies had less chl a and mass per unit surface area. The results indicate that small colonies can harvest light and acquire DIC more efficiently and have higher maximum photosynthetic rates and growth rates than large colonies.
Resumo:
Juvenile (3.0 +/- 0.2 g) gibel carp (Carassius auratus gibelio ) were fed to satiation for 8 weeks to investigate the effect of feeding frequency on growth, feed utilization and size variation. Five feeding frequencies were tested: two meals per day (M2), three meals per day (M3), four meals per day (M4), 12 meals per day (M12) and 24 meals per day (M24). The results showed that daily food intake increased significantly with the increase in feeding frequency and there was no significant difference between daily food intakes in M12 and M24 treatments. Growth rate, feed efficiency increased significantly with increasing feeding frequencies. Size variation was not affected by feeding frequency. Apparent digestibility of dry matter was not influenced by feeding frequency, while apparent digestibility of protein and energy increased significantly at high feeding frequencies. The feeding frequency had no significant effect on the moisture, lipid, protein, or energy contents of gibel carp, while the ash content decreased with increased feeding frequency. It was recommended that 24 meals per day was the optimal feeding frequency for juvenile gibel carp.
Resumo:
Experiments in tanks and cages were conducted to examine the effects of stocking density and body size of the Mitten crab (Eriocheir sinensis) on transplanted submersed macrophyte biomass. The early juvenile crab with 7.0 +/-0.6 mm. carapace width (CW) had little effect on plant biomass, regardless of the stocking densities. However, larger crabs (CW: 18.0 +/-2.2,35.0 +/-3.6, and 60.0 +/-5.7 mm) significantly influenced plant biomass, especially at large stocking densities. Predictive models, using crab body size and stocking density, were generated to demonstrate effect of the mitten crab on the changes Of plant biomass. The results indicate that dense mitten crab populations may adversely affect aquatic plant communities, particularly when its animal food resources are scarce.
Resumo:
Two growth trials using a range of ration sizes from starvation to maximum feeding suggested that linear relationships existed between specific growth rate and ration size for Nile tilapia and givel carp, Continuous measurement of activity showed that activity level, in terms of distance swum per day, was not affected significantly by ration size in both Nile tilapia and gibel carp. (C) 2001 The Fisheries Society of the British Isles.