968 resultados para single-chain amphiphile


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Breast cancer is the second most common cancer worldwide and the most common cancer reported in women. This malignant tumour is characterised by a number of specific features including uncontrolled cell proliferation. It ranks fifth in the world as a cause of cancer death in women. Early diagnosis increases 5 year survival rates up to 95%. Heparan sulfate proteoglycans (HSPGs) are complex proteins composed of a core protein to which a number of highly sulfated side chains are synthesised by a highly co-ordinated process resulting in distinct sulfation patterns, which determine specific interations with cell-signaling partners including growth factors, their receptors, ligands and morphogens. The enzymes responsible for chain initiation, elongation and sulfation are critical for creating HS chain variability conferring biological functionality. This study investigated single nucleotide polymorphism in SULF1, the enzyme responsible for the 6-0 desulfation of heparan sulfate side chains. We investigated this SNP in an Australian Caucasian case-control breast cancer population and found a significant association between SULF1 and breast cancer at both the allelic and genotypic level (allele, p=0.016; genotype, p=0.032). Our results suggest the res2623047 SNP in SULF1 may impact breast cancer susceptibility. Specifically, the T allele of rs2623047 in SULF1 is associated with a increased risk of developing breast cancer in our cohort. The identification of markers including SULF1 may improve detection of this disease at its earliest stages improving patient treatment and prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synopsis and review of the Australian feature film The Chain Reaction, directed by Ian Barry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The availability of synthetic peptides has paved the way for their use in tailor-made interactions with biomolecules. In this study, a 16mer LacI-based peptide was used as an affinity ligand to examine the scale up feasibility for plasmid DNA purification. First, the peptide was designed and characterized for the affinity purification of lacO containing plasmid DNA, to be employed as a high affinity ligand for the potential capturing of plasmid DNA in a single unit operation. It was found there were no discernible interactions with a control plasmid that did not encode the lacO nucleotide sequence. The dissociation equilibrium constant of the binding between the 16mer peptide and target pUC19 was 5.0 ± 0.5 × 10-8 M as assessed by surface plasmon resonance. This selectivity and moderated affinity indicate that the 16mer is suitable for the adsorption and chromatographic purification of plasmid DNA. The suitability of this peptide was then evaluated using a chromatography system with the 16mer peptide immobilized to a customized monolith to purify plasmid DNA, obtaining preferential purification of supercoiled pUC19. The results demonstrate the applicability of peptide-monolith supports to scale up the purification process for plasmid DNA using designed ligands via a biomimetic approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single step affinity chromatography was employed for the purification of plasmid DNA (pDNA), thus eliminating several steps compared with current commercial purification methods for pDNA. Significant reduction in pDNA production time and cost was obtained. This chromatographic operation employed a peptide-monolith construct to isolate pDNA from Escherichia coli (E. coli) impurities present in a clarified lysate feedstock. Mild conditions were applied to avoid any degradation of pDNA. The effect of some important parameters on pDNA yield was also evaluated with the aim of optimising the affinity purification of pDNA. The results demonstrate that 81% of pDNA was recovered and contaminating gDNA, RNA and protein were removed below detectable levels. © 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic difficulties arising from mild brain injury (TBI) are difficult to predict because the processes underlying changes after TBI are poorly understood. In mild brain injury the extent of neuropsychiatric and cognitive symptoms correspond poorly to overt tissue loss (Barth 1983; Liu 2010). Cellular, immune and hormonal cascades occurring after injury and continuing during the healing process may impact uninjured brain regions sensitive to the effects of physiological and emotional stress, which receive projections from the injury site. Changes in these most basic properties due to injury or disease have profound implications for virtually every aspect of brain function through disruption of neurotransmitter, neuroendocrine and metabolic systems. In order to screen for changes in transmitter and metabolic activity, in this study we developed Single voxel proton Magnetic Resonance Spectroscopy (1H-MRS) for use in both injured and control animals. We first evaluated if 1H-MRS could be used to evaluate in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus in both control and injured animals after controlled cortical impact injury to the rat prefrontal cortex. We found that metabolite measurements for Myo-Inositol, Choline, creatine, Glutamate+Glutamine, and N-acetyl-acetate are attainable in deep brain structures in vivo in injured and controls rats. We next seek to evaluate longitudinally, in vivo, alterations in brain metabolism and catabolism of the prefrontal cortex, amygdala and ventral hippocampus during the first month after controlled cortical impact injury to the rat prefrontal cortex. These ongoing studies will provide data on the changes in transmitters and metabolites over time in injured and non-injured subjects. These studies address some of the fundamental questions about how mild brain injury has such diverse effects on overall brain health and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ~110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability. Numerical modelling to investigate the sensitivity of ethanol combustion has also been performed. It has been shown that ethanol combustion is sensitive to the initial air temperature around the feasible operating conditions of the engine. Moreover, a negative temperature coefficient region of approximately 900{1050 K (the approximate temperature at fuel injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical modelling. A consequence of this is that the dominate effect influencing the ignition delay under increasing ethanol substitutions may rather be from an increase in chemical reactions and not from in-cylinder temperature. Further investigation revealed that the chemical reactions at low ethanol substitutions are different compared to the high (> 20%) ethanol substitutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A switching control strategy is proposed for single inductor current-fed push-pull converter with a secondary side active voltage doubler rectifier or a voltage rectifier used in photovoltaic (PV) grid interfacing. The proposed switching control strategy helps to turn-on and turn-off the primary side power switches with zero-voltage and zero-current switching. The operation of the push-pull converter is analyzed for two modes of operation. The feasibility of the proposed switching control strategy is validated using simulation and experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic modelling is critical in GNSS data processing. Currently, GNSS data processing commonly relies on the empirical stochastic model which may not reflect the actual data quality or noise characteristics. This paper examines the real-time GNSS observation noise estimation methods enabling to determine the observation variance from single receiver data stream. The methods involve three steps: forming linear combination, handling the ionosphere and ambiguity bias and variance estimation. Two distinguished ways are applied to overcome the ionosphere and ambiguity biases, known as the time differenced method and polynomial prediction method respectively. The real time variance estimation methods are compared with the zero-baseline and short-baseline methods. The proposed method only requires single receiver observation, thus applicable to both differenced and un-differenced data processing modes. However, the methods may be subject to the normal ionosphere conditions and low autocorrelation GNSS receivers. Experimental results also indicate the proposed method can result on more realistic parameter precision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this project is to investigate the strain-rate dependent mechanical behaviour of single living cells using both experimental and numerical techniques. The results revealed that living cells behave as porohyperlastic materials and that both solid and fluid phases within the cells play important roles in their mechanical responses. The research reported in this thesis provides a better understanding of the mechanisms underlying the cellular responses to external mechanical loadings and of the process of mechanical signal transduction in living cells. It would help us to enhance knowledge of and insight into the role of mechanical forces in supporting tissue regeneration or degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Osseointegrated Prosthetic Limb (OPL) was introduced in 2011. The socket prostheses failed to address a few major requirements of normal gait. Our hypothesis was that using an Osseointegrated Prosthetic limb will result in superior function of daily activities, without compromising patients’ safety. Traditionally this surgery was done as a two-stage procedure. The aims of this study were (A)to describe the single - surgical procedure of the OPL; and (B)To present data on potential risks and benefits with sssessment of clinical and functional outcomes at follow up.