693 resultados para simulation-based learning environment
Resumo:
We develop four algorithms for simulation-based optimization under multiple inequality constraints. Both the cost and the constraint functions are considered to be long-run averages of certain state-dependent single-stage functions. We pose the problem in the simulation optimization framework by using the Lagrange multiplier method. Two of our algorithms estimate only the gradient of the Lagrangian, while the other two estimate both the gradient and the Hessian of it. In the process, we also develop various new estimators for the gradient and Hessian. All our algorithms use two simulations each. Two of these algorithms are based on the smoothed functional (SF) technique, while the other two are based on the simultaneous perturbation stochastic approximation (SPSA) method. We prove the convergence of our algorithms and show numerical experiments on a setting involving an open Jackson network. The Newton-based SF algorithm is seen to show the best overall performance.
Resumo:
This paper analyses the behaviour of a general class of learning automata algorithms for feedforward connectionist systems in an associative reinforcement learning environment. The type of connectionist system considered is also fairly general. The associative reinforcement learning task is first posed as a constrained maximization problem. The algorithm is approximated hy an ordinary differential equation using weak convergence techniques. The equilibrium points of the ordinary differential equation are then compared with the solutions to the constrained maximization problem to show that the algorithm does behave as desired.
Resumo:
Image and video filtering is a key image-processing task in computer vision especially in noisy environment. In most of the cases the noise source is unknown and hence possess a major difficulty in the filtering operation. In this paper we present an error-correction based learning approach for iterative filtering. A new FIR filter is designed in which the filter coefficients are updated based on Widrow-Hoff rule. Unlike the standard filter the proposed filter has the ability to remove noise without the a priori knowledge of the noise. Experimental result shows that the proposed filter efficiently removes the noise and preserves the edges in the image. We demonstrate the capability of the proposed algorithm by testing it on standard images infected by Gaussian noise and on a real time video containing inherent noise. Experimental result shows that the proposed filter is better than some of the existing standard filters
Resumo:
In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.
Resumo:
In recent times computational algorithms inspired by biological processes and evolution are gaining much popularity for solving science and engineering problems. These algorithms are broadly classified into evolutionary computation and swarm intelligence algorithms, which are derived based on the analogy of natural evolution and biological activities. These include genetic algorithms, genetic programming, differential evolution, particle swarm optimization, ant colony optimization, artificial neural networks, etc. The algorithms being random-search techniques, use some heuristics to guide the search towards optimal solution and speed-up the convergence to obtain the global optimal solutions. The bio-inspired methods have several attractive features and advantages compared to conventional optimization solvers. They also facilitate the advantage of simulation and optimization environment simultaneously to solve hard-to-define (in simple expressions), real-world problems. These biologically inspired methods have provided novel ways of problem-solving for practical problems in traffic routing, networking, games, industry, robotics, economics, mechanical, chemical, electrical, civil, water resources and others fields. This article discusses the key features and development of bio-inspired computational algorithms, and their scope for application in science and engineering fields.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov's transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The problem of updating the reliability of instrumented structures based on measured response under random dynamic loading is considered. A solution strategy within the framework of Monte Carlo simulation based dynamic state estimation method and Girsanov’s transformation for variance reduction is developed. For linear Gaussian state space models, the solution is developed based on continuous version of the Kalman filter, while, for non-linear and (or) non-Gaussian state space models, bootstrap particle filters are adopted. The controls to implement the Girsanov transformation are developed by solving a constrained non-linear optimization problem. Numerical illustrations include studies on a multi degree of freedom linear system and non-linear systems with geometric and (or) hereditary non-linearities and non-stationary random excitations.
Resumo:
In this work, we address the recovery of block sparse vectors with intra-block correlation, i.e., the recovery of vectors in which the correlated nonzero entries are constrained to lie in a few clusters, from noisy underdetermined linear measurements. Among Bayesian sparse recovery techniques, the cluster Sparse Bayesian Learning (SBL) is an efficient tool for block-sparse vector recovery, with intra-block correlation. However, this technique uses a heuristic method to estimate the intra-block correlation. In this paper, we propose the Nested SBL (NSBL) algorithm, which we derive using a novel Bayesian formulation that facilitates the use of the monotonically convergent nested Expectation Maximization (EM) and a Kalman filtering based learning framework. Unlike the cluster-SBL algorithm, this formulation leads to closed-form EMupdates for estimating the correlation coefficient. We demonstrate the efficacy of the proposed NSBL algorithm using Monte Carlo simulations.
Resumo:
This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.
Resumo:
ITS Training has undergone a revolutionary transformation in the past two years. The company has saved money, generated more business, improved recruitment, retention and achievement and expanded throughout the world because of its virtual learning environment (VLE): the ‘Student Campus'. Under its previous paper-based distance learning programme it was a hard enough task to deliver lectures to students in Liverpool. Now, the company has a classroom of learners in Tokyo, Japan.
Resumo:
In October 2010, PBD introduced its eQual Learning VLE (virtual learning environment) to provide an online knowledge resource for its students. During the project, the company learnt many lessons about how to deliver learning effectively. In the course of a year researching VLE platforms, looking for material, and remapping NVQ courses for new QCF qualifications, the company realised that it was more important to deliver engaging and relevant content, rather than boasting the most innovative technology.
Resumo:
Paul Kendrick, Vocational Trainer for Action Training, has created a bespoke virtual learning environment (VLE) utilising Google Apps for Education. Learners and trainers are now more fulfilled as they have greater ownership of their learning environment and can pick which applications best suit their learning needs. They can also work more collaboratively as they are able to share documents with other learners and trainers between different locations.
Resumo:
Souad Kouachi, a Science Lecturer at Epping Forest College has utilised the Xerte Online Toolkit (XOLTK ) to create a collaborative learning environment for her students. Souad briefed her learners on how to use the Xerte Online Toolkit to develop dynamic learning objects. Her learners were soon able to create presentations containing learning objects as well as assessment activities, which they now use in the classroom with their peers to reinforce learning.
Resumo:
Case study on how a digital learning fellow at Prospects College for Advanced Technology has developed a digital learning strategy that focuses on vocational training and work-based learning.