988 resultados para simulation tools
Resumo:
In this work we present numerical simulations of continuous flow left ventricle assist device implantation with the aim of comparing difference in flow rates and pressure patterns depending on the location of the anastomosis and the rotational speed of the device. Despite the fact that the descending aorta anastomosis approach is less invasive, since it does not require a sternotomy and a cardiopulmonary bypass, its benefits are still controversial. Moreover, the device rotational speed should be correctly chosen to avoid anomalous flow rates and pressure distribution in specific location of the cardiovascular tree. With the aim of assessing the differences between these two approaches and device rotational speed in terms of flow rate and pressure waveforms, we set up numerical simulations of network of one-dimensional models where we account for the presence of an outflow cannula anastomosed to different locations of the aorta. Then, we use the resulting network to compare the results of the two different cannulations for several stages of heart failure and different rotational speed of the device. The inflow boundary data for the heart and the cannulas are obtained from a lumped parameters model of the entire circulatory system with an assist device, which is validated with clinical data. The results show that ascending and descending aorta cannulations lead to similar waveforms and mean flow rate in all the considered cases. Moreover, regardless of the anastomosis region, the rotational speed of the device has an important impact on wave profiles; this effect is more pronounced at high RPM.
Resumo:
El objetivo de este proyecto consiste en el estudio de los parámetros circuitales (condensadores, bobinas…) de un resonador, realizado con estructuras microstrip, donde permita obtener unos resultados de esos parámetros circuitales cambiando los valores físicos del diseño, tales como la longitud y la anchura del resonador a partir de las medidas de los parámetros S. Para llevar a cabo dicho trabajo, se desarrolla en primer lugar toda la teoría necesaria de resonadores. Empezando por el funcionamiento y la estructura del resonador diseñado, y mostrando especial interés en el modelado de dicho resonador. Seguidamente, se estudia y analiza su comportamiento a través de las simulaciones de los parámetros S. Una vez se ha estudiado y analizado su comportamiento, se procede con las modificaciones de los parámetros físicos y se analiza a través de las simulaciones de los parámetros S cómo afectan estas modificaciones en los parámetros circuitales. Donde se utilizan una serie de herramientas que agilizan la extracción de los valores de los parámetros circuitales del resonador.
Resumo:
The identification of genetically homogeneous groups of individuals is a long standing issue in population genetics. A recent Bayesian algorithm implemented in the software STRUCTURE allows the identification of such groups. However, the ability of this algorithm to detect the true number of clusters (K) in a sample of individuals when patterns of dispersal among populations are not homogeneous has not been tested. The goal of this study is to carry out such tests, using various dispersal scenarios from data generated with an individual-based model. We found that in most cases the estimated 'log probability of data' does not provide a correct estimation of the number of clusters, K. However, using an ad hoc statistic DeltaK based on the rate of change in the log probability of data between successive K values, we found that STRUCTURE accurately detects the uppermost hierarchical level of structure for the scenarios we tested. As might be expected, the results are sensitive to the type of genetic marker used (AFLP vs. microsatellite), the number of loci scored, the number of populations sampled, and the number of individuals typed in each sample.
Resumo:
The pharmacokinetic determinants of successful antibiotic prophylaxis of endocarditis are not precisely known. Differences in half-lives of antibiotics between animals and humans preclude extrapolation of animal results to human situations. To overcome this limitation, we have mimicked in rats the amoxicillin kinetics in humans following a 3-g oral dose (as often used for prophylaxis of endocarditis) by delivering the drug through a computerized pump. Rats with catheter-induced vegetations were challenged with either of two strains of antibiotic-tolerant viridans group streptococci. Antibiotics were given either through the pump (to simulate the whole kinetic profile during prophylaxis in humans) or as an intravenous bolus which imitated only the peak level of amoxicillin (18 mg/liter) in human serum. Prophylaxis by intravenous bolus was inoculum dependent and afforded a limited protection only in rats challenged with the minimum inoculum size infecting > or = 90% of untreated controls. In contrast, simulation of kinetics in humans significantly protected animals challenged with 10 to 100 times the inoculum of either of the test organisms infecting > or = 90% of untreated controls. Thus, simulation of the profiles of amoxicillin prophylaxis in human serum was more efficacious than mere imitation of the transient peak level in rats. This confirms previous studies suggesting that the duration for which the serum amoxicillin level remained detectable (not only the magnitude of the peak) was an important parameter in successful prophylaxis of endocarditis. The results also suggest that single-dose prophylaxis with 3 g of amoxicillin in humans might be more effective than predicted by conventional animal models in which only peak levels of antibiotic in human serum were stimulated.
Resumo:
En aquest treball es fa un anàlisi de l'aplicació OSMDroid i d'altres aplicacions i llibreries SIG rellevants per al sistema operatiu Android.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.
Resumo:
The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution.
Resumo:
Creació d¿un software de gestió de factures electròniques desenvolupat en aquesta plataforma tecnològica, amb indicació expressa d¿utilització de les eines VSTO (Visual Studio Tools for Office) en la seva última versió.
Resumo:
Taenia solium-taeniasis and cysticercosis were studied in the human and porcine populations of a rural community in the Southern Ecuadorian Andes. From the 1059 inhabitants, 800 serum samples and 958 stool samples could be collected. In addition, 646 from the estimated 1148 pigs were tongue inspected. Circulating antigen was detected by enzyme linked immunosorbent assay (Ag-ELISA) in 2.25% of the human population, whereas intestinal taeniasis was detected in 1.46% by the formalin-ether technique. Following treatment and recovery of tapeworm fragments these were all identified as T. solium. Porcine cysticercosis was diagnosed in 3.56% of the pigs by tongue inspection. In addition, enzyme linked immunoelectrotransfer blot (EITB) was performed on a subset group of 100 humans to confirm the results of the Ag-ELISA. One hundred serum samples from pigs were also analysed by EITB. It appeared that 43 and 74% of humans and pigs had antibodies against T. solium cysticerci, respectively. It is concluded that contrary to the high exposure of the human population to T. solium that is suggested by EITB, the number of active cysticercosis cases, diagnosed by Ag-ELISA, was low, which may indicate endemic stability. The further use of complementary diagnostic methods for a better understanding of the epidemiology of T. solium is suggested.
Resumo:
Les syndromes neuropathiques sont caractérisés par une douleur d'intensité élevée, de longue durée et résistante aux analgésiques classiques. De fait, il existe un risque important de répercussions sur la vie et le bien-être des patients. A travers une vignette clinique, cet article abordera le diagnostic, le traitement spécifique et l'impact de la douleur neuropathique sur la qualité de vie et les conséquences psychologiques associées, comme la dépression et l'anxiété. Nous présenterons des outils validés qui permettent d'objectiver la composante neuropathique aux douleurs et les comorbidités psychiatriques associées. Cette évaluation globale favorise un meilleur dialogue avec les patients ainsi que l'élaboration de stratégies thérapeutiques, notamment par le biais d'antidépresseurs, dont l'efficacité sera discutée en fin d'article. Neuropathic pain syndromes are characterized by intense and long lasting pain that is resistant to usual analgesics. Patients are therefore at high risk of decreased quality of life and impaired well-being. Using a case report, we will consider in this article the diagnosis and treatment of neuropathic pain as well as its impact on the quality of life including psychological consequences such as depression and anxiety. We will present simple and reliable scales that can help the general practitioner evaluate the neuropathic component of the pain syndrome and its related psychiatric co-morbidities. This comprehensive approach to pain management should facilitate communication with the patient and help the practitioner select the most appropriate therapeutic strategy, notably the prescription of antidepressants, the efficacy of which we will discuss at the end of the article.
Resumo:
Bio-nano interactions can be defined as the study of interactions between nanoscale entities and biological systems such as, but not limited to, peptides, proteins, lipids, DNA and other biomolecules, cells and cellular receptors and organisms including humans. Studying bio-nano interactions is particularly useful for understanding engineered materials that have at least one dimension in the nanoscale. Such materials may consist of discrete particles or nanostructured surfaces. Much of biology functions at the nanoscale; therefore, our ability to manipulate materials such that they are taken up at the nanoscale, and engage biological machinery in a designed and purposeful manner, opens new vistas for more efficient diagnostics, therapeutics (treatments) and tissue regeneration, so-called nanomedicine. Additionally, this ability of nanomaterials to interact with and be taken up by cells allows nanomaterials to be used as probes and tools to advance our understanding of cellular functioning. Yet, as a new technology, assessment of the safety of nanomaterials, and the applicability of existing regulatory frameworks for nanomaterials must be investigated in parallel with development of novel applications. The Royal Society meeting 'Bio-nano interactions: new tools, insights and impacts' provided an important platform for open dialogue on the current state of knowledge on these issues, bringing together scientists, industry, regulatory and legal experts to concretize existing discourse in science law and policy. This paper summarizes these discussions and the insights that emerged.
Resumo:
This paper analyses the use of open video editing tools to support the creation and production of online collaborative audiovisual projects for higher education. It focuses on the possibilities offered by these tools to promote collective creation in virtual environments.