986 resultados para second harmonic generation
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Trabalho de Projecto apresentado para cumprimento dos requisitos necessários à obtençao do grau de Mestre em Didáctica do Inglês,
Resumo:
This study aimed to evaluate the second-generation OptiMal test for malaria diagnosis under various storage conditions. It detected all the positive samples, except for two Plasmodium malariae samples. Further research evaluating diverse environmental conditions are important for ICT test applicability in Brazilian malaria areas.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, perfil Gestão e Sistemas Ambientais
Resumo:
Digital Microfluidics (DMF) is a second generation technique, derived from the conventional microfluidics that instead of using continuous liquid fluxes, it uses only individual droplets driven by external electric signals. In this thesis a new DMF control/sensing system for visualization, droplet control (movement, dispensing, merging and splitting) and real time impedance measurement have been developed. The software for the proposed system was implemented in MATLAB with a graphical user interface. An Arduino was used as control board and dedicated circuits for voltage switching and contacts were designed and implemented in printed circuit boards. A high resolution camera was integrated for visualization. In our new approach, the DMF chips are driven by a dual-tone signal where the sum of two independent ac signals (one for droplet operations and the other for impedance sensing) is applied to the electrodes, and afterwards independently evaluated by a lock-in amplifier. With this new approach we were able to choose the appropriated amplitudes and frequencies for the different proposes (actuation and sensing). The measurements made were used to evaluate the real time droplet impedance enabling the knowledge of its position and velocity. This new approach opens new possibilities for impedance sensing and feedback control in DMF devices.
Resumo:
Portuguese literature does not have many examples of successful and renowned utopias, though the considerable amount of published utopias written in foreign languages and translated to Portuguese language being quite relevant. However, in the last quarter of the twentieth century, almost at the eve of the second millennium an important Portuguese utopia was published: Utopia III, written by Pina Martins (1998). This long novel is structured as being the sequel of More’s Utopia, presenting the history and actual status of the mother of all literary utopias. The question at the basis of the whole novel is, “What would More’s Utopia be like today?” The main goal of this text will be to presente a literary analysis of Utopia III, focusing on the humanist principles and their adaptation to contemporary society, the search for a harmonious relationship between city and nature, the defence of a Portuguese identity and the appeal to a humanist renewal.
Resumo:
A potentially renewable and sustainable source of energy is the chemical energy associated with solvation of salts. Mixing of two aqueous streams with different saline concentrations is spontaneous and releases energy. The global theoretically obtainable power from salinity gradient energy due to World’s rivers discharge into the oceans has been estimated to be within the range of 1.4-2.6 TW. Reverse electrodialysis (RED) is one of the emerging, membrane-based, technologies for harvesting the salinity gradient energy. A common RED stack is composed by alternately-arranged cation- and anion-exchange membranes, stacked between two electrodes. The compartments between the membranes are alternately fed with concentrated (e.g., sea water) and dilute (e.g., river water) saline solutions. Migration of the respective counter-ions through the membranes leads to ionic current between the electrodes, where an appropriate redox pair converts the chemical salinity gradient energy into electrical energy. Given the importance of the need for new sources of energy for power generation, the present study aims at better understanding and solving current challenges, associated with the RED stack design, fluid dynamics, ionic mass transfer and long-term RED stack performance with natural saline solutions as feedwaters. Chronopotentiometry was used to determinate diffusion boundary layer (DBL) thickness from diffusion relaxation data and the flow entrance effects on mass transfer were found to avail a power generation increase in RED stacks. Increasing the linear flow velocity also leads to a decrease of DBL thickness but on the cost of a higher pressure drop. Pressure drop inside RED stacks was successfully simulated by the developed mathematical model, in which contribution of several pressure drops, that until now have not been considered, was included. The effect of each pressure drop on the RED stack performance was identified and rationalized and guidelines for planning and/or optimization of RED stacks were derived. The design of new profiled membranes, with a chevron corrugation structure, was proposed using computational fluid dynamics (CFD) modeling. The performance of the suggested corrugation geometry was compared with the already existing ones, as well as with the use of conductive and non-conductive spacers. According to the estimations, use of chevron structures grants the highest net power density values, at the best compromise between the mass transfer coefficient and the pressure drop values. Finally, long-term experiments with natural waters were performed, during which fouling was experienced. For the first time, 2D fluorescence spectroscopy was used to monitor RED stack performance, with a dedicated focus on following fouling on ion-exchange membrane surfaces. To extract relevant information from fluorescence spectra, parallel factor analysis (PARAFAC) was performed. Moreover, the information obtained was then used to predict net power density, stack electric resistance and pressure drop by multivariate statistical models based on projection to latent structures (PLS) modeling. The use in such models of 2D fluorescence data, containing hidden, but extractable by PARAFAC, information about fouling on membrane surfaces, considerably improved the models fitting to the experimental data.
Resumo:
Fado was listed as UNESCO Intangible Cultural Heritage in 2011. This dissertation describes a theoretical model, as well as an automatic system, able to generate instrumental music based on the musics and vocal sounds typically associated with fado’s practice. A description of the phenomenon of fado, its musics and vocal sounds, based on ethnographic, historical sources and empirical data is presented. The data includes the creation of a digital corpus, of musical transcriptions, identified as fado, and statistical analysis via music information retrieval techniques. The second part consists in the formulation of a theory and the coding of a symbolic model, as a proof of concept, for the automatic generation of instrumental music based on the one in the corpus.
Resumo:
Based on the report for the unit “Foresight Analysis Methods” of the PhD program on Technology Assessment in 2013. This unit was supervised by Prof. António Moniz. The paper had meanwhile contributions from the supervisor and Dr. Douglas Robinson.
Resumo:
The present PhD thesis develops the cell functional enviromics (CFE) method to investigate the relationship between environment and cellular physiology. CFE may be defined as the envirome-wide cellular function reconstruction through the collection and systems-level analysis of dynamic envirome data. Throughout the thesis, CFE is illustrated by two main applications to cultures of a constitutive P. pastoris X33 strain expressing a scFv antibody fragment. The first application addresses the challenge of culture media development. A dataset was built from 26 shake flask experiments, with variations in trace elements concentrations and basal medium dilution based on the standard BSM+PTM1. Protein yield showed high sensitivity to culture medium variations, while biomass was essentially determined by BSM dilution. High scFv yield was associated with high overall metabolic fluxes through central carbon pathways concomitantly with a relative shift of carbon flux from biosynthetic towards energy-generating pathways. CFE identified three cellular functions (growth, energy generation and by-product formation) that together described 98.8% of the variance in observed fluxes. Analyses of how medium factors relate to identified cellular functions showed iron and manganese at concentrations close to PTM1 inhibit overall metabolic activity. The second application addresses bioreactor operation. Pilot 50 L fed-batch cultivations, followed by 1H-NMR exometabolite profiling, allowed the acquisition of data for 21 environmental factors over time. CFE identified five major metabolic pathway groups that are frequently activated by the environment. The resulting functional enviromics map may serve as template for future optimization of media composition and feeding strategies for Pichia pastoris. The present PhD thesis is a step forward towards establishing the foundations of CFE that is still at its infancy. The methods developed herein are a contribution for changing the culture media and process development paradigm towards a holistic and systematic discipline in the future.
Resumo:
This thesis does not set out to focus on the dynamics relationship between Twitter and stock prices, but instead tries to understand if using relevant information extracted from tweets has the power to increase investors’ stock picking ability, and generate alpha in portfolio’s choice relative to a benchmark. Despite the short period analyzed, it gives promising results that the sentiment analysis performed by Social Market Analytics Inc. applied to an equity portfolio, is able to generate positive abnormal returns, statistically significant in and out of sample.
Resumo:
Despite the extensive literature in finding new models to replace the Markowitz model or trying to increase the accuracy of its input estimations, there is less studies about the impact on the results of using different optimization algorithms. This paper aims to add some research to this field by comparing the performance of two optimization algorithms in drawing the Markowitz Efficient Frontier and in real world investment strategies. Second order cone programming is a faster algorithm, appears to be more efficient, but is impossible to assert which algorithm is better. Quadratic Programming often shows superior performance in real investment strategies.
Resumo:
When sports fans attend live sports events, they usually engage in social experiences with friends, family members and other fans at the venue sharing the same affiliation. However, fans watching the same event through a live television broadcast end up not feeling so emotionally connected with the athletes and other fans as they would if they were watching it live, together with thousands of other fans. With this in mind, we seek to create mobile applications that deliver engaging social experiences involving remote fans watching live broadcasted sports events. Taking into account the growing use of mobile devices when watching TV broadcasts, these mobile applications explore the second screen concept, which allows users to interact with content that complements the TV broadcast. Within this context, we present a set of second screen application prototypes developed to test our concepts, the corresponding user studies and results, as well as suggestions on how to apply the prototypes’ concepts not only in different sports, but also during TV shows and electronic sports. Finally, we also present the challenges we faced and the guidelines we followed during the development and evaluation phases, which may give a considerable contribution to the development of future second screen applications for live broadcasted events.