889 resultados para scale effect
Resumo:
Purpose: To investigate the effect of orthokeratology on peripheral aberrations in two myopic volunteers. Methods: The subjects wore reverse geometry orthokeratology lenses overnight and were monitored for 2 weeks of wear. They underwent corneal topography, peripheral refraction (out to ±34° along the horizontal visual field) and peripheral aberration measurements across the 42° × 32° central visual field using a modified Hartmann-Shack aberrometer. Results: Spherical equivalent refraction was corrected for the central 25° of the visual fields beyond which it gradually returned to its preorthokeratology values. There were increases in axial coma, spherical aberration, higher order root mean square aberrations, and total root-mean-squared aberrations (excluding defocus). The rates of change of vertical and horizontal coma across the field changed in sign. Total root mean square aberrations showed a quadratic rate of change across the visual field which was greater subsequent to orthokeratology. Conclusion: Although orthokeratology can correct peripheral relative hypermetropia it induces dramatic increases in higher-order aberrations across the field
Resumo:
We determined the foveal Stiles-Crawford effect (SCE) as a function of up to 8D accommodation stimulus in six young emmetropes and six young myopes using a psychophysical two-channel Maxwellian system in which the threshold luminance increment of a 1 mm spot entering through variable positions in the pupil was determined against a background formed by a 4 mm spot entering the pupil centrally. The SCE became steeper in both groups with increasing accommodation stimulus, but with no systematic shift of the peak. Combining the data of both groups gave significant increases in directionality of 15-20% in horizontal and vertical pupil meridians with 6D of accommodation. However, additional experiments indicated that much of this was an artefact of higher order aberrations and accommodative lag. Thus, there appears to be little changes in orientation or directionality in the SCE with accommodation stimulus levels up to 6 D, but it is possible that changes may occur at very high accommodation levels
Resumo:
The Wet Tropics bioregion of north-eastern Australia has been subject to extensive fluctuations in climate throughout the late Pliocene and Pleistocene. Cycles of rainforest contraction and expansion of dry sclerophyll forest associated with such climatic fluctuations are postulated to have played a major role in driving geographical endemism in terrestrial rainforest taxa. Consequences for the distributions of aquatic organisms, however, are poorly understood.The Australian non-biting midge species Echinocladius martini Cranston (Diptera: Chironomidae), although restricted to cool, well-forested freshwater streams, has been considered to be able to disperse among populations located in isolated rainforest pockets during periods of sclerophyllous forest expansion, potentially limiting the effect of climatic fluctuations on patterns of endemism. In this study, mitochondrial COI and 16S data were analysed for E. martini collected from eight sites spanning theWet Tropics bioregion to assess the scale and extent of phylogeographic structure. Analyses of genetic structure showed several highly divergent cryptic lineages with restricted geographical distributions. Within one of the identified lineages, strong genetic structure implied that dispersal among proximate (<1 km apart) streams was extremely restricted. The results suggest that vicariant processes, most likely due to the systemic drying of the Australian continent during the Plio-Pleistocene, might have fragmented historical E. martini populations and, hence, promoted divergence in allopatry.
Resumo:
Spoken term detection (STD) popularly involves performing word or sub-word level speech recognition and indexing the result. This work challenges the assumption that improved speech recognition accuracy implies better indexing for STD. Using an index derived from phone lattices, this paper examines the effect of language model selection on the relationship between phone recognition accuracy and STD accuracy. Results suggest that language models usually improve phone recognition accuracy but their inclusion does not always translate to improved STD accuracy. The findings suggest that using phone recognition accuracy to measure the quality of an STD index can be problematic, and highlight the need for an alternative that is more closely aligned with the goals of the specific detection task.
Resumo:
Youth sports teams are usually grouped into yearly age groups based on fixed cut-off date (September 1st in the UK and January 1st in Australia). Children born just after this cut-off will be the oldest and most mature in their age group. This gives them an advantage in competitive sport, an advantage which has persisted into adulthood as shown by seasonal patterns in the dates of birth of professional ice hockey, football and basketball players. We were interested in whether a similar seasonal pattern exists in professional Australian Football League (AFL) players. We examined all AFL players in the 2009 season excluding foreign-born players. We compared the observed number of players’ born in each month with the expected number based on national statistics. There was a marked and statistically significant seasonality in players’ dates of birth. There were 33% more players than expected with dates of birth in January, and 25% fewer in December. Players who are relatively older in youth AFL teams have a better chance of turning professional.
Resumo:
A recognized brand name that provides a competitive advantage is considered one of a firm’s most valuable assets. Many firms have benefitted from their well-established brand name by adopting the strategy of brand extension (Aaker and Keller, 1990). Many academic studies have examined the methods used to introduce successful brand extensions, and analysed how consumers evaluate the brand extensions (Aaker and Keller, 1990; Barone, 2005; Bath, 1997; Bottomley and Holden, 2001; Edelman, 2003; Fedorikhin, Park and Thomson, 2008; Kwun, 2004; Lockhart and Ford, 2005). Some researchers have suggested that brand extension strategies may carry the risk of diluting important consumer trust in the parent brand (Martinez and Pina, 2003; C. W. Park, Milberg and Lawson, 1991). Furthermore, some studies have focused on the role of the parent brand in brand extensions (Apostolopoulou, 2002; Bath, 1997; Bhat and Reddy, 2001; Yeung and Wyer Jr, 2005). Brand extensions may have a positive or a negative influence on the parent brand, so it is important to understand the specific impact on dimensions such as brand image, brand awareness, and customer-brand relationships. This study will carry investigate the effects of brand extensions on the relationships customers have with the parent brand.
Resumo:
This paper presents effects of end-winding on shaft voltage in AC generators. A variety of design parameters have been considered to calculate the parasitic capacitive couplings in the machine structure with Finite Elements simulations and mathematical calculations. End-winding capacitances have also been calculated to have a precise estimation of shaft voltage and its relationship with design parameters in AC generators.
Resumo:
The study reported here, constitutes a full review of the major geological events that have influenced the morphological development of the southeast Queensland region. Most importantly, it provides evidence that the region’s physiography continues to be geologically ‘active’ and although earthquakes are presently few and of low magnitude, many past events and tectonic regimes continue to be strongly influential over drainage, morphology and topography. Southeast Queensland is typified by highland terrain of metasedimentary and igneous rocks that are parallel and close to younger, lowland coastal terrain. The region is currently situated in a passive margin tectonic setting that is now under compressive stress, although in the past, the region was subject to alternating extensional and compressive regimes. As part of the investigation, the effects of many past geological events upon landscape morphology have been assessed at multiple scales using features such as the location and orientation of drainage channels, topography, faults, fractures, scarps, cleavage, volcanic centres and deposits, and recent earthquake activity. A number of hypotheses for local geological evolution are proposed and discussed. This study has also utilised a geographic information system (GIS) approach that successfully amalgamates the various types and scales of datasets used. A new method of stream ordination has been developed and is used to compare the orientation of channels of similar orders with rock fabric, in a topologically controlled approach that other ordering systems are unable to achieve. Stream pattern analysis has been performed and the results provide evidence that many drainage systems in southeast Queensland are controlled by known geological structures and by past geological events. The results conclude that drainage at a fine scale is controlled by cleavage, joints and faults, and at a broader scale, large river valleys, such as those of the Brisbane River and North Pine River, closely follow the location of faults. These rivers appear to have become entrenched by differential weathering along these planes of weakness. Significantly, stream pattern analysis has also identified some ‘anomalous’ drainage that suggests the orientations of these watercourses are geologically controlled, but by unknown causes. To the north of Brisbane, a ‘coastal drainage divide’ has been recognized and is described here. The divide crosses several lithological units of different age, continues parallel to the coast and prevents drainage from the highlands flowing directly to the coast for its entire length. Diversion of low order streams away from the divide may be evidence that a more recent process may be the driving force. Although there is no conclusive evidence for this at present, it is postulated that the divide may have been generated by uplift or doming associated with mid-Cenozoic volcanism or a blind thrust at depth. Also north of Brisbane, on the D’Aguilar Range, an elevated valley (the ‘Kilcoy Gap’) has been identified that may have once drained towards the coast and now displays reversed drainage that may have resulted from uplift along the coastal drainage divide and of the D’Aguilar blocks. An assessment of the distribution and intensity of recent earthquakes in the region indicates that activity may be associated with ancient faults. However, recent movement on these faults during these events would have been unlikely, given that earthquakes in the region are characteristically of low magnitude. There is, however, evidence that compressive stress is building and being released periodically and ancient faults may be a likely place for this stress to be released. The relationship between ancient fault systems and the Tweed Shield Volcano has also been discussed and it is suggested here that the volcanic activity was associated with renewed faulting on the Great Moreton Fault System during the Cenozoic. The geomorphology and drainage patterns of southeast Queensland have been compared with expected morphological characteristics found at passive and other tectonic settings, both in Australia and globally. Of note are the comparisons with the East Brazilian Highlands, the Gulf of Mexico and the Blue Ridge Escarpment, for example. In conclusion, the results of the study clearly show that, although the region is described as a passive margin, its complex, past geological history and present compressive stress regime provide a more intricate and varied landscape than would be expected along typical passive continental margins. The literature review provides background to the subject and discusses previous work and methods, whilst the findings are presented in three peer-reviewed, published papers. The methods, hypotheses, suggestions and evidence are discussed at length in the final chapter.
Resumo:
Objectives: As the population ages, more people will be wearing presbyopic vision corrections when driving. However, little is known about the impact of these vision corrections on driving performance. This study aimed to determine the subjective driving difficulties experienced when wearing a range of common presbyopic contact lens and spectacle corrections.----- Methods: A questionnaire was developed and piloted that included a series of items regarding difficulties experienced while driving under daytime and night-time conditions (rated on five-point and seven-point Likert scales). Participants included 255 presbyopic patients recruited through local optometry practices. Participants were categorized into five age-matched groups; including those wearing no vision correction for driving (n = 50), bifocal spectacles (n = 54), progressive spectacles (n = 50), monovision contact lenses (n = 53), and multifocal contact lenses (n = 48).----- Results: Overall, ratings of satisfaction during daytime driving were relatively high for all correction types. However, multifocal contact lens wearers were significantly less satisfied with aspects of their vision during night-time than daytime driving, particularly regarding disturbances from glare and haloes. Progressive spectacle lens wearers noticed more distortion of peripheral vision, whereas bifocal spectacle wearers reported more difficulties with tasks requiring changes of focus and those who wore no optical correction for driving reported problems with intermediate and near tasks. Overall, satisfaction was significantly higher for progressive spectacles than bifocal spectacles for driving.----- Conclusions: Subjective visual experiences of different presbyopic vision corrections when driving vary depending on the vision tasks and lighting level. Eye-care practitioners should be aware of the driving-related difficulties experienced with each vision correction type and the need to select corrective types that match the driving needs of their patients.
Resumo:
Purpose. To investigate the functional impact of amblyopia in children, the performance of amblyopic and age-matched control children on a clinical test of eye movements was compared. The influence of visual factors on test outcome measures was explored. Methods. Eye movements were assessed with the Developmental Eye Movement (DEM) test, in a group of children with amblyopia (n = 39; age, 9.1 ± 0.9 years) of different causes (infantile esotropia, n = 7; acquired strabismus, n = 10; anisometropia, n = 8; mixed, n = 8; deprivation, n = 6) and in an age-matched control group (n = 42; age, 9.3 ± 0.4 years). LogMAR visual acuity (VA), stereoacuity, and refractive error were also recorded in both groups. Results. No significant difference was found between the amblyopic and age-matched control group for any of the outcome measures of the DEM (vertical time, horizontal time, number of errors and ratio(horizontal time/vertical time)). The DEM measures were not significantly related to VA in either eye, level of binocular function (stereoacuity), history of strabismus, or refractive error. Conclusions. The performance of amblyopic children on the DEM, a commonly used clinical measure of eye movements, has not previously been reported. Under habitual binocular viewing conditions, amblyopia has no effect on DEM outcome scores despite significant impairment of binocular vision and decreased VA in both the better and worse eye.
Resumo:
Precise, up-to-date and increasingly detailed road maps are crucial for various advanced road applications, such as lane-level vehicle navigation, and advanced driver assistant systems. With the very high resolution (VHR) imagery from digital airborne sources, it will greatly facilitate the data acquisition, data collection and updates if the road details can be automatically extracted from the aerial images. In this paper, we proposed an effective approach to detect road lane information from aerial images with employment of the object-oriented image analysis method. Our proposed algorithm starts with constructing the DSM and true orthophotos from the stereo images. The road lane details are detected using an object-oriented rule based image classification approach. Due to the affection of other objects with similar spectral and geometrical attributes, the extracted road lanes are filtered with the road surface obtained by a progressive two-class decision classifier. The generated road network is evaluated using the datasets provided by Queensland department of Main Roads. The evaluation shows completeness values that range between 76% and 98% and correctness values that range between 82% and 97%.
Resumo:
The automatic extraction of road features from remote sensed images has been a topic of great interest within the photogrammetric and remote sensing communities for over 3 decades. Although various techniques have been reported in the literature, it is still challenging to efficiently extract the road details with the increasing of image resolution as well as the requirement for accurate and up-to-date road data. In this paper, we will focus on the automatic detection of road lane markings, which are crucial for many applications, including lane level navigation and lane departure warning. The approach consists of four steps: i) data preprocessing, ii) image segmentation and road surface detection, iii) road lane marking extraction based on the generated road surface, and iv) testing and system evaluation. The proposed approach utilized the unsupervised ISODATA image segmentation algorithm, which segments the image into vegetation regions, and road surface based only on the Cb component of YCbCr color space. A shadow detection method based on YCbCr color space is also employed to detect and recover the shadows from the road surface casted by the vehicles and trees. Finally, the lane marking features are detected from the road surface using the histogram clustering. The experiments of applying the proposed method to the aerial imagery dataset of Gympie, Queensland demonstrate the efficiency of the approach.
Resumo:
Background: There are innumerable diabetes studies that have investigated associations between risk factors, protective factors, and health outcomes; however, these individual predictors are part of a complex network of interacting forces. Moreover, there is little awareness about resilience or its importance in chronic disease in adulthood, especially diabetes. Thus, this is the first study to: (1) extensively investigate the relationships among a host of predictors and multiple adaptive outcomes; and (2) conceptualise a resilience model among people with diabetes. Methods: This cross-sectional study was divided into two research studies. Study One was to translate two diabetes-specific instruments (Problem Areas In Diabetes, PAID; Diabetes Coping Measure, DCM) into a Chinese version and to examine their psychometric properties for use in Study Two in a convenience sample of 205 outpatients with type 2 diabetes. In Study Two, an integrated theoretical model is developed and evaluated using the structural equation modelling (SEM) technique. A self-administered questionnaire was completed by 345 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Results: Confirmatory factor analyses confirmed a one-factor structure of the PAID-C which was similar to the original version of the PAID. Strong content validity of the PAID-C was demonstrated. The PAID-C was associated with HbA1c and diabetes self-care behaviours, confirming satisfactory criterion validity. There was a moderate relationship between the PAID-C and the Perceived Stress Scale, supporting satisfactory convergent validity. The PAID-C also demonstrated satisfactory stability and high internal consistency. A four-factor structure and strong content validity of the DCM-C was confirmed. Criterion validity demonstrated that the DCM-C was significantly associated with HbA1c and diabetes self-care behaviours. There was a statistical correlation between the DCM-C and the Revised Ways of Coping Checklist, suggesting satisfactory convergent validity. Test-retest reliability demonstrated satisfactory stability of the DCM-C. The total scale of the DCM-C showed adequate internal consistency. Age, duration of diabetes, diabetes symptoms, diabetes distress, physical activity, coping strategies, and social support were the most consistent factors associated with adaptive outcomes in adults with diabetes. Resilience was positively associated with coping strategies, social support, health-related quality of life, and diabetes self-care behaviours. Results of the structural equation modelling revealed protective factors had a significant direct effect on adaptive outcomes; however, the construct of risk factors was not significantly related to adaptive outcomes. Moreover, resilience can moderate the relationships among protective factors and adaptive outcomes, but there were no interaction effects of risk factors and resilience on adaptive outcomes. Conclusion: This study contributes to an understanding of how risk factors and protective factors work together to influence adaptive outcomes in blood sugar control, health-related quality of life, and diabetes self-care behaviours. Additionally, resilience is a positive personality characteristic and may be importantly involved in the adjustment process among people living with type 2 diabetes.
Resumo:
Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.
Resumo:
The present study used a university sample to assess the test-retest reliability and validity of the Australian Propensity for Angry Driving Scale (Aus-PADS). The scale has stability over time, and convergent validity was established, as Aus-PADS scores correlated significantly with established anger and impulsivity measures. Discriminant validity was also established, as Aus-PADS scores did not correlate with Venturesomeness scores. The Aus-PADS has demonstrated criterion validity, as scores were correlated with behavioural measures, such as yelling at other drivers, gesturing at other drivers, and feeling angry but not doing anything. Aus-PADS scores reliably predicted the frequency of these behaviours over and above other study variables. No significant relationship between aggressive driving and crash involvement was observed. It was concluded that the Aus-PADS is a reliable and valid tool appropriate for use in Australian research, and that the potential relationship between aggressive driving and crash involvement warrants further investigation with a more representative (and diverse) driver sample.