989 resultados para rot fungi
Resumo:
Introduction - Feed supplies the necessary nutrients for the growth of healthy animals, which are a part of the human diet. The presence of toxigenic fungi in animal feed such as Aspergillus spp. may contribute to 1) the loss of nutritional value of feedstuff, since fungi will assimilate the most readily available nutrients present in the feed, and 2) the development of mycotoxicoses and chronic conditions, which can raise economic issues due to animal disease and contamination of animal derived products. Aim of the study - The goal of this work was to evaluate the incidence of Aspergilli, particularly from the Circumdati, Flavi and Fumigati sections, through real-time quantitative PCR (qPCR) in 11 feed samples.
Resumo:
Feed can easily be contaminated and colonized by fungi that use up the nutrients for their own metabolism and growth, producing secondary metabolites such as mycotoxins that are not eliminated throughout the feed processing. The major problems associated with mycotoxin contaminated animal feed are metabolic disturbances resulting in poor animal productivity. In addition, handling contaminated animal feed can also raise health issues regarding workers exposure to fungi and mycotoxins. The scope of this work was to characterize fungal distribution in 11 poultry feed samples. Twenty grams of feed were suspended in 180 mL of distilled water and homogenized during 20 minutes at 200 rpm. The washed supernatant was plated in malt extract agar (MEA) and dichloran glycerol agar base (DG18) media for morphological identification of the mycobiota present. Using macro- and microscopic analysis of the colonies, fungal contamination was evident in 72.7% of the analyzed poultry feed samples. Fungal load ranged from 0 to 13140 CFU/g, and the most prevalent species/genera were F. graminearum complex (71.1%), Penicillium sp. (11.6%), Cladosporium sp. (8.8%), and Fusarium poae (3.6%). In addition to these species, we also isolated Aspergillus sections Circumdati, Nigri and Aspergilli, and Mucor and Rhizopus genus albeit at a lower abundance. The data obtained showed that, besides high fungal contamination, mycotoxins contamination is probably a reality, particularly in the final product since mycotoxins resist to all the processing operations including thermal treatment. Additionally, data claimed attention for the probable co-exposure to fungi and mycotoxins of the workers in feed industries.
Resumo:
Introduction - Mycotoxin contamination was reported to occur in some food and commodities, such as coffee, particularly due to the presence of toxigenic fungi such as Aspergillus, Penicillium and Fusarium spp. Aspergilli are known to produce high levels of mycotoxins, such as ochratoxin and aflatoxin. Aspergillus ochraceus has been proposed as the major cause of ochratoxin A contamination in coffee beans. Aim of the study - The aim of this work was to evaluate the prevalence of Aspergillus sections Circumdati, Flavi and Fumigati in 28 green coffee samples to be used by Portuguese coffee industry, from Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee) species from different origins.
Resumo:
Climate changes and their effects on fungal distribution and activity are aspects of concern regarding the human exposure to mycotoxins. An exhaustive search was made for papers available in scientific databases reposrting the influence that climate cchange has on fungi and mycotoxins. Also a review regarding fungal burden, collected between 2010 and 2015 in different settings, was done to support the discussion about future fungi and mycotoxins ocuupational exposure. A. flavus complex, E. graminerarum complex and F. verticilliodes were the most reported to be influenced by climate changes. We noted also that the analyzed Portuguese settings presented already an occupational problem due to their fungal burden. It will be important to know future climate changes to select what complexes/species and strains, and consequently the mycotoxins, we should consider as indicators of an occupational problem. In addition, epidemiologic studies are needed to increase knowledge about potential health effects related with the exposure to both risk factors.
Resumo:
p.73-78
Resumo:
Sheath rot complex and seed discoloration in rice involve a number of pathogenic bacteria that cannot be associated with distinctive symptoms. These pathogens can easily travel on asymptomatic seeds and therefore represent a threat to rice cropping systems. Among the rice-infecting Pseudomonas, P. fuscovaginae has been associated with sheath brown rot disease in several rice growing areas around the world. The appearance of a similar Pseudomonas population, which here we named P. fuscovaginae-like, represents a perfect opportunity to understand common genomic features that can explain the infection mechanism in rice. We showed that the novel population is indeed closely related to P. fuscovaginae. A comparative genomics approach on eight rice-infecting Pseudomonas revealed heterogeneous genomes and a high number of strain-specific genes. The genomes of P. fuscovaginae-like harbor four secretion systems (Type I, II, III, and VI) and other important pathogenicity machinery that could probably facilitate rice colonization. We identified 123 core secreted proteins, most of which have strong signatures of positive selection suggesting functional adaptation. Transcript accumulation of putative pathogenicity-related genes during rice colonization revealed a concerted virulence mechanism. The study suggests that rice-infecting Pseudomonas causing sheath brown rot are intrinsically diverse and maintain a variable set of metabolic capabilities as a potential strategy to occupy a range of environments.
Resumo:
Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant-herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.
Resumo:
Portugal has been the world leader in the cork sectr in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi raising concerns as occupational hazards in cork industry. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city. The chosen fungal species are the ones most frequently associated with respiratory problems in workers from these industries.
Resumo:
The simultaneous presence of fungi and particles in horse stable environment can create a singular exposure condition because particles have been reported has a good carrier for microorganisms and their metabolites. This study intends to characterize this setting and to recognize fungi and particles occupational exposure.
Resumo:
In order to study caudal fin rot with emphasis on Aeromonas hydrophila and Pseudomonas fluorescens in Salmo trutta caspius from the salmonids propagation and breeding center of Shahid Bahonar of kelardasht region, One hundred and eighty brood stocks having fin damage symptoms were chosen. Two bacterial samples from each fish were cultured on Aeromonas and Pseudomonas specific media. Biochemical tests, API2OE identification system and antibiogram test using six antibiotic disks were performed for diagnosing isolates bacteria and finding suitable antibiotic. Thirty samples from caudal fin of damaged fishes were fixed in 10% formalin and 51.tm microscopic sections were prepared using standard scatological methods and then stained by Haematoxylin-Eosin staining method to observe the pathological changes and also Maccallum-Goodpasture staining method to observe the bacterial colonies. In second stage of the study, bacterial samples were taken from thirty brood stocks using similar method at the first stage of sampling. For isolation and biochemical diagnosis of Aeromonas and Pseudormonas genus, the samples were analyzed by molecular research included PCR amplification (using 16S rDNA genes of the genus pseudomonas and 16S-23S rDNA intergenic spacer of the genus Aeromonas) and restriction analysis by four restriction enzymes for each genus. The results of biochemical tests showed that isolated bacteria were belonged to Aeromonas caviae and Aeromonas hydrophila (subspecies anaerogenes), Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas alcaligenes while the results of API2OE identification system showed that the isolated bacteria belonged to Aeromonas hydrophila, Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas aeruginosa. Restriction analysis of Aeromonas samples with Hin6l, Csp6I, Taql, and Tasl revealed three samples were different from others while restriction analysis of Pseudomonas samples with Alul, Hinfl, Rsal, and Trull showed at least five species or biovars. The results of antibiogram test showed all Aeromonas samples were sensitive to Trimethoprim, Chloramphenicol and Nitrofurazone, mostly to Nalidixic acid and Chloramphenicol, while most of samples were resistant to Erythromycin and Oxytetracycline. Pseudomonas samples were only sensitive to Nitrofurazone and mostly resistant to Oxytetracycline, Nalidixic acid, Erythromycin, Trimethoprim and Chloramphenicol. The results of light microscope study showed hyperplasia and spongiosis of the malpigian cells of epidermis, increasing of melanin pigments underlying epidermis; sever necrosis in both epidermis and dermis and also sloughing the epidermis in some cases. Occurrence of clefts through the epithelium, neovascularization, hyperemia and mild inflammatory response in dermis and separation of the fin rays also were observed. No bacterial colonies were found in the sections.
Resumo:
During surveys of wild and cultivated rice in northern Queensland in 2014 and 2015, 92 fungal isolates were obtained from plants that were afflicted by foliar diseases, including the rice blast pathogen, Pyricularia oryzae, and the brown spot pathogen, Bipolaris oryzae. Seven species of Curvularia were found, viz. Curvularia aeria, C. alcornii, C. asianensis, C. clavata, C. lunata, C. muehlenbeckiae and an undescribed species. To remove uncertainty about the identity of the host plants from which the fungi were isolated, a DNA barcoding strategy was developed using regions of the chloroplast genome. Pathogenicity tests using wild rice isolates of P. oryzae indicated that many local rice varieties are susceptible to infection.
Resumo:
Different forms of fungal diseases affecting the nose and paranasal sinuses are recognized, including invasive and non-invasive fungal rhinosinusitis. Penicillium glabrum complex is associated with respiratory diseases such as suberosis, a typical disease of cork industry workers. In addition, Chrysonilia sitophila has been described as causing occupational asthma, associated to prolonged exposure to high counts of spores. In this study we aimed to access fungal exposure in workers from one cork industry through the mycological analysis of their nasal exudate and the environmental fungal contamination of their surroundings as well.
Resumo:
A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.
Resumo:
QTL identified for seedling and adult plant crown rot resistance in four partially resistant hexaploid wheat sources. PCR-based markers identified for use in marker-assisted selection. Crown rot, caused by Fusarium pseudograminearum, is an important disease of wheat in many wheat-growing regions globally. Complete resistance to infection by F. pseudograminearum has not been observed in a wheat host, but germplasm with partial resistance to this pathogen has been identified. The partially resistant wheat hexaploid germplasm sources 2-49, Sunco, IRN497 and CPI133817 were investigated in both seedling and adult plant field trials to identify markers associated with the resistance which could be used in marker-assisted selection programs. Thirteen different quantitative trait loci (QTL) conditioning crown rot resistance were identified in the four different sources. Some QTL were only observed in seedling trials whereas others appeared to be adult plant specific. For example while the QTL on chromosomes 1AS, 1BS, and 4BS contributed by 2-49 and on 2BS contributed by Sunco were detected in both seedling and field trials, the QTL on 1DL present in 2-49 and the QTL on 3BL in IRN497 were only detected in seedling trials. Genetic correlations between field trials of the same population were strong, as were correlations between seedling trials of the same population. Low to moderate correlations were observed between seedling and field trials. Flanking markers, most of which are less than 10 cM apart, have now been identified for each of the regions associated with crown rot resistance.
Resumo:
In vitro experimental environments are used to study interactions between microorganisms, and predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to closely match the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation was studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25oC and 30oC). Competition experiments showed interaction between main effects of aflatoxin accumulation and environment at 25oC, but not so at 30oC. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-hour incubation in different experimental environments. Whereas, all fungi incubated within the soil environment survived; in the cotton-wool environment, none of the competitors of A. flavus survived at 30 oC. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post harvest.