992 resultados para retrobulbar circulation
Resumo:
Utilizing the framework of effective surface quasi-geostrophic (eSQG) theory, we explored the potential of reconstructing the 3D upper ocean circulation structures, including the balanced vertical velocity (w) field, from high-resolution sea surface height (SSH) data of the planned SWOT satellite mission. Specifically, we utilized the 1/30°, submesoscale-resolving, OFES model output and subjected it through the SWOT simulator that generates the along-swath SSH data with expected measurement errors. Focusing on the Kuroshio Extension region in the North Pacific where regional Rossby numbers range from 0.22 to 0.32, we found that the eSQG dynamics constitutes an effective framework for reconstructing the 3D upper ocean circulation field. Using the modeled SSH data as input, the eSQG-reconstructed relative vorticity (ζ) and w fields are found to reach a correlation of 0.7–0.9 and 0.6–0.7, respectively, in the 1,000m upper ocean when compared to the original model output. Degradation due to the SWOT sampling and measurement errors in the input SSH data for the ζ and w reconstructions is found to be moderate, 5–25% for the 3D ζ field and 15-35% for the 3D w field. There exists a tendency for this degradation ratio to decrease in regions where the regional eddy variability (or Rossby number) increases.
Resumo:
The time-mean Argo float displacements and the World Ocean Atlas 2009 temperature–salinity climatology are used to obtain the total, top to bottom, mass transports. Outside of an equatorial band, the total transports are the sum of the vertical integrals of geostrophic- and wind-driven Ekman currents. However, these transports are generally divergent, and to obtain a mass conserving circulation, a Poisson equation is solved for the streamfunction with Dirichlet boundary conditions at solid boundaries. The value of the streamfunction on islands is also part of the unknowns. This study presents and discusses an energetic circulation in three basins: the North Atlantic, the North Pacific, and the Southern Ocean. This global method leads to new estimations of the time-mean western Eulerian boundary current transports maxima of 97 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at 60°W for the Gulf Stream, 84 Sv at 157°E for the Kuroshio, 80 Sv for the Agulhas Current between 32° and 36°S, and finally 175 Sv for the Antarctic Circumpolar Current at Drake Passage. Although the large-scale structure and boundary of the interior gyres is well predicted by the Sverdrup relation, the transports derived from the wind stress curl are lower than the observed transports in the interior by roughly a factor of 2, suggesting an important contribution of the bottom torques. With additional Argo displacement data, the errors caused by the presence of remaining transient terms at the 1000-db reference level will continue to decrease, allowing this method to produce increasingly accurate results in the future.
Resumo:
The Atlantic Water (AW) layer in the Arctic Basin is isolated from the atmosphere by the overlaying surface layer, yet observations have revealed that the velocities in this layer exhibit significant variations. Here analysis of a global ocean/sea ice model hindcast, complemented by experiments performed with an idealized process model, is used to investigate what controls the variability of AW circulation, with a focus on the role of wind forcing. The AW circulation carries the imprint of wind variations, both remotely over the Nordic and Barents Seas where they force the AW inflow variability, and locally over the Arctic Basin through the forcing of the wind-driven Beaufort Gyre, which modulates and transfers the wind variability to the AW layer. The strong interplay between the circulation within the surface and AW layers suggests that both layers must be considered to understand variability in either.
Resumo:
La circulation extracorporelle (CEC) est une technique utilisée en chirurgie cardiaque effectuée des milliers de fois chaque jour à travers le monde. L’instabilité hémodynamique associée au sevrage de la CEC difficile constitue la principale cause de mortalité en chirurgie cardiaque et l’hypertension pulmonaire (HP) a été identifiée comme un des facteurs de risque les plus importants. Récemment, une hypothèse a été émise suggérant que l'administration prophylactique (avant la CEC) de la milrinone par inhalation puisse avoir un effet préventif et faciliter le sevrage de la CEC chez les patients atteints d’HP. Toutefois, cette indication et voie d'administration pour la milrinone n'ont pas encore été approuvées par les organismes réglementaires. Jusqu'à présent, la recherche clinique sur la milrinone inhalée s’est principalement concentrée sur l’efficacité hémodynamique et l'innocuité chez les patients cardiaques, bien qu’aucun biomarqueur n’ait encore été établi. La dose la plus appropriée pour l’administration par nébulisation n'a pas été déterminée, de même que la caractérisation des profils pharmacocinétiques (PK) et pharmacodynamiques (PD) suite à l'inhalation. L'objectif de notre recherche consistait à caractériser la relation exposition-réponse de la milrinone inhalée administrée chez les patients subissant une chirurgie cardiaque sous CEC. Une méthode analytique par chromatographie liquide à haute performance couplée à un détecteur ultraviolet (HPLC-UV) a été optimisée et validée pour le dosage de la milrinone plasmatique suite à l’inhalation et s’est avérée sensible et précise. La limite de quantification (LLOQ) était de 1.25 ng/ml avec des valeurs de précision intra- et inter-dosage moyennes (CV%) <8%. Des patients souffrant d’HP pour lesquels une chirurgie cardiaque sous CEC était prévue ont d’abord été recrutés pour une étude pilote (n=12) et, par la suite, pour une étude à plus grande échelle (n=28) où la milrinone (5 mg) était administrée par inhalation pré-CEC. Dans l'étude pilote, nous avons comparé l'exposition systémique de la milrinone peu après son administration avec un nébuliseur pneumatique ou un nébuliseur à tamis vibrant. L’efficacité des nébuliseurs en termes de dose émise et dose inhalée a également été déterminée in vitro. Dans l'étude à plus grande échelle conduite en utilisant exclusivement le nébuliseur à tamis vibrant, la dose inhalée in vivo a été estimée et le profil pharmacocinétique de la milrinone inhalée a été pleinement caractérisé aux niveaux plasmatique et urinaire. Le ratio de la pression artérielle moyenne sur la pression artérielle pulmonaire moyenne (PAm/PAPm) a été choisi comme biomarqueur PD. La relation exposition-réponse de la milrinone a été caractérisée pendant la période d'inhalation en étudiant la relation entre l'aire sous la courbe de l’effet (ASCE) et l’aire sous la courbe des concentrations plasmatiques (ASC) de chacun des patients. Enfin, le ratio PAm/PAPm a été exploré comme un prédicteur potentiel de sortie de CEC difficile dans un modèle de régression logistique. Les expériences in vitro ont démontré que les doses émises étaient similaires pour les nébuliseurs pneumatique (64%) et à tamis vibrant (68%). Cependant, la dose inhalée était 2-3 fois supérieure (46% vs 17%) avec le nébuliseur à tamis vibrant, et ce, en accord avec les concentrations plasmatiques. Chez les patients, en raison des variations au niveau des facteurs liés au circuit et au ventilateur causant une plus grande dose expirée, la dose inhalée a été estimée inférieure (30%) et cela a été confirmé après récupération de la dose de milrinone dans l'urine 24 h (26%). Les concentrations plasmatiques maximales (Cmax: 41-189 ng/ml) et l'ampleur de la réponse maximale ΔRmax-R0 (0-65%) ont été observées à la fin de l'inhalation (10-30 min). Les données obtenues suite aux analyses PK sont en accord avec les données publiées pour la milrinone intraveineuse. Après la période d'inhalation, les ASCE individuelles étaient directement reliées aux ASC (P=0.045). Enfin, notre biomarqueur PD ainsi que la durée de CEC ont été identifiés comme des prédicteurs significatifs de la sortie de CEC difficile. La comparaison des ASC et ASCE correspondantes a fourni des données préliminaires supportant une preuve de concept pour l'utilisation du ratio PAm/PAPm comme biomarqueur PD prometteur et justifie de futures études PK/PD. Nous avons pu démontrer que la variation du ratio PAm/PAPm en réponse à la milrinone inhalée contribue à la prévention de la sortie de CEC difficile.
Resumo:
In this study, numerical simulation of the Caspian Sea circulation was performed using COHERENS three-dimensional numerical model and field data. The COHERENS three-dimensional model and FVCOM were performed under the effect of the wind driven force, and then the simulation results obtained were compared. Simulation modeling was performed at the Caspian Sea. Its horizontal grid size is approximately equal to 5 Km and 30 sigma levels were considered. The numerical simulation results indicate that the winds' driven-forces and temperature gradient are the most important driving force factors of the Caspian circulation pattern. One of the effects of wind-driven currents was the upwelling phenomenon that was formed in the eastern shores of the Caspian Sea in the summer. The simulation results also indicate that this phenomenon occurred at a depth less than 40 meters, and the vertical velocity in July and August was 10 meters and 7 meters respectively. During the upwelling phenomenon period the temperatures on the east coast compared to the west coast were about 5°C lower. In autumn and winter, the warm waters moved from the south east coast to the north and the cold waters moved from the west coast of the central Caspian toward the south. In the subsurface and deep layers, these movements were much more structured and caused strengthening of the anti-clockwise circulation in the area, especially in the central area of Caspian. The obtained results of the two models COHERENS and FVCOM performed under wind driven-force show a high coordination of the two models, and so the wind current circulation pattern for both models is almost identical.
Resumo:
The quantitative role of the Atlantic Meridional Overturning Circulation (AMOC) in dissolved organic carbon (DOC) export is evaluated by combining DOC measurements with observed water mass transports. In the eastern subpolar North Atlantic, both upper and lower limbs of the AMOC transport high-DOC waters. Deep water formation that connects the two limbs of the AMOC results in a high downward export of non-refractory DOC (197 Tg-C center dot yr(-1)). Subsequent remineralization in the lower limb of the AMOC, between subpolar and subtropical latitudes, consumes 72% of the DOC exported by the whole Atlantic Ocean. The contribution of DOC to the carbon sequestration in the North Atlantic Ocean (62 Tg-C center dot yr(-1)) is considerable and represents almost a third of the atmospheric CO2 uptake in the region.
Resumo:
Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.
Resumo:
We present a new radiation scheme for the Oxford Planetary Unified Model System for Venus, suitable for the solar and thermal bands. This new and fast radiative parameterization uses a different approach in the two main radiative wavelength bands: solar radiation (0.1-5.5 mu m) and thermal radiation (1.7-260 mu m). The solar radiation calculation is based on the delta-Eddington approximation (two-stream-type) with an adding layer method. For the thermal radiation case, a code based on an absorptivity/emissivity formulation is used. The new radiative transfer formulation implemented is intended to be computationally light, to allow its incorporation in 3D global circulation models, but still allowing for the calculation of the effect of atmospheric conditions on radiative fluxes. This will allow us to investigate the dynamical-radiative-microphysical feedbacks. The model flexibility can be also used to explore the uncertainties in the Venus atmosphere such as the optical properties in the deep atmosphere or cloud amount. The results of radiative cooling and heating rates and the global-mean radiative-convective equilibrium temperature profiles for different atmospheric conditions are presented and discussed. This new scheme works in an atmospheric column and can be easily implemented in 3D Venus global circulation models. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the duodenum, spleen, tongue, and lungs were sampled from 56 Italian wolves who died between 2017 and 2020. The aim of the study was to evaluate the presence and spread of DNA and RNA viruses in the wolf population examined, relating the virological results to: year of sampling, region of origin, sex, age, season, genetic determination of the species, nutritional conditions, causes of death, matrices examined. In addition, the presence or absence of co-infections was evaluated. Through molecular methods, the presence of genomic DNA of three important DNA viruses was investigated, i.e.: Canine Parvovirus type 2 (CPV-2), Canine Adenovirus type 1 (CAdV-1), Canine Adenovirus type 2 (CAdV-2). Furthermore, the presence of genomic RNA of the important RNA viruses, Canine Enteric Coronavirus (CCoV) and Canine Distemper Virus (CDV), was also investigated. The results showed that the virus with the highest prevalence in the wolf population studied was CPV-2, found in 78.6% of subjects (44/56). The prevalence of CAdV was 17.9% (10/56), in particular CAdV-1 (12.5% - 7/56) and CAdV-2 (5.4% - 3/56). The results of the molecular investigations in RT-PCR of the two RNA viruses (CCoV and CDV) did not give positive results in the study population. In this study it was observed that the majority of wolves that resulted positive were in good nutritional conditions, thus excluding a direct cause of death from CPV-2, CAdV-1, and CAdV- 2 infections. Moreover, the prevalence obtained in this study suggests that, during the years here studied, the circulation of CAdV-1 and CAdV-2 in Italian wolves of the three sampled regions was sporadic, proving consistent with sporadic and short-lived introductions of the virus in these populations. However, the situation for CPV-2 is different as there was a circulation that suggests a pattern of continuous and lasting endemic exposure over time.
Resumo:
The study of tides and their interactions with the complex dynamics of the global ocean represents a crucial challenge in ocean modelling. This thesis aims to deepen this study from a dynamical point of view, analysing what are the tidal effects on the general circulation of the ocean. We perform different experiments of a mesoscale-permitting global ocean model forced by both atmospheric fields and astronomical tidal potential, and we implement two parametrizations to include in the model tidal phenomena that are currently unresolved, with particular emphasis to the topographic wave drag for locally dissipating internal waves. An additional experiment using a mesoscale-resolving configuration is used to compare the simulated tides at different resolutions with observed data. We find that the accuracy of modelled tides strongly depends on the region and harmonic component of interest, even though the increased resolution allows to improve the modelled topography and resolve more intense internal waves. We then focus on the impact of tides in the Atlantic Ocean and find that tides weaken the overturning circulation during the analysed period from 1981 to 2007, even though the interannual differences strongly change in both amplitude and phase. The zonally integrated momentum balance shows that tide changes the water stratification at the zonal boundaries, modifying the pressure and therefore the geostrophic balance over the entire basin. Finally, we describe the overturning circulation in the Mediterranean Sea computing the meridional and zonal streamfunctions both in the Eulerian and residual frameworks. The circulation is characterised by different cells, and their forcing processes are described with particular emphasis to the role of mesoscale and a transient climatic event. We complete the description of the overturning circulation giving evidence for the first time to the connection between meridional and zonal cells.
Resumo:
The thesis aims at exploring possible legal solutions to remove the obstacles to the free circulation of judgments in the civil justice area that arise from the remarkably diverging national rules on procedural time limits. As shown by the case-law of the CJEU, time limits have recently come under closer scrutiny. The interplay between national and EU law illustrates that time limits raise significant deficiencies connected with the right to a fair trial under Art. 6 ECHR and Art. 47 CFR – e.g. the effective recovery of claims, effective judicial protection, effective cross-border enforcement of judgments – which negatively impact EU cross-border civil litigation. In order to overcome some of the weaknesses of the current legal framework governing the cross-border enforcement of judgments and strengthen the parties’ fundamental procedural rights the PhD thesis intends to determine whether and, to what extent time limits can be harmonised at EU level. EU action on time limits would indeed favour the speed, efficiency and proportionality of cross-border proceedings without sacrificing the fairness of the judicial process and the equality of the parties
Resumo:
The Mediterranean Sea is a semi-enclosed basin connected to the Atlantic Ocean through the narrow and shallow Strait of Gibraltar and further subdivided in two different sub-basins, the Eastern Mediterranean and the Western Mediterranean, connected through the Stait of Sicily. On annual basis, a net heat budget of −7 W/m2, combined with exceeding evaporation over precipation and runoff together with wind stress, is responsible for the antiestuarine character of the zonal thermoaline circulation. The outflow at Gibraltar Strait is mainly composed of Levantine Intermediate Water (LIW) and deep water masses formed in the Western Mediterranean Sea. The aim of this thesis is to validate and quantitatively assess the main routes of water masses composing the ouflow at Gibraltar Strait, using for the first time in the Mediterranean Sea a lagrangian interpretation of the eulerian velocity field produced from an eddy-resolving reanalysis dataset, spanning from 2000 to 2012. A lagrangian model named Ariane is used to map out three-dimensional trajectories in order to describe the pathways of water mass transport from the Strait of Sicily, the Gulf of Lyon and the Northern Tyrrhenian Sea to the Gibraltar Strait. Numerical experiments were carried out by seeding millions of particles in the Strait of Gibraltar and following them backwards in time to track the origins of water masses and transport exchanged between the different sections of the Mediterranean. Finally, the main routes of the intermediate and deep water masses are reconstructed from virtual particles trajectories, which highlight the role of the Western Mediterranean Deep Water (WMDW) as the main contributor to the Gibraltar Strait outflow. For the first time, the quantitative description of the flow of water masses coming from the Eastern Mediterranean towards the Gibraltar Strait is provided and a new route that directly links the Northern Tyrrhenian Sea to Gibralatr Strait has been detected.
Resumo:
Intermediate-complexity general circulation models are a fundamental tool to investigate the role of internal and external variability within the general circulation of the atmosphere and ocean. The model used in this thesis is an intermediate complexity atmospheric general circulation model (SPEEDY) coupled to a state-of-the-art modelling framework for the ocean (NEMO). We assess to which extent the model allows a realistic simulation of the most prominent natural mode of variability at interannual time scales: El-Niño Southern Oscillation (ENSO). To a good approximation, the model represents the ENSO-induced Sea Surface Temperature (SST) pattern in the equatorial Pacific, despite a cold tongue-like bias. The model underestimates (overestimates) the typical ENSO spatial variability during the winter (summer) seasons. The mid-latitude response to ENSO reveals that the typical poleward stationary Rossby wave train is reasonably well represented. The spectral decomposition of ENSO features a spectrum that lacks periodicity at high frequencies and is overly periodic at interannual timescales. We then implemented an idealised transient mean state change in the SPEEDY model. A warmer climate is simulated by an alteration of the parametrized radiative fluxes that corresponds to doubled carbon dioxide absorptivity. Results indicate that the globally averaged surface air temperature increases of 0.76 K. Regionally, the induced signal on the SST field features a significant warming over the central-western Pacific and an El-Niño-like warming in the subtropics. In general, the model features a weakening of the tropical Walker circulation and a poleward expansion of the local Hadley cell. This response is also detected in a poleward rearrangement of the tropical convective rainfall pattern. The model setting that has been here implemented provides a valid theoretical support for future studies on climate sensitivity and forced modes of variability under mean state changes.
Resumo:
The aim of this study was to investigate whether β-adrenoceptor (β-AR) overstimulation induced by in vivo treatment with isoproterenol (ISO) alters vascular reactivity and nitric oxide (NO) production and signaling in pulmonary arteries. Vehicle or ISO (0.3mgkg(-1)day(-1)) was administered daily to male Wistar rats. After 7days, the jugular vein was cannulated to assess right ventricular (RV) systolic pressure (SP) and end diastolic pressure (EDP). The extralobar pulmonary arteries were isolated to evaluate the relaxation responses, protein expression (Western blot), NO production (diaminofluorescein-2 fluorescence), and cyclic guanosine 3',5'-monophosphate (cGMP) levels (enzyme immunoassay kit). ISO treatment induced RV hypertrophy; however, no differences in RV-SP and EDP were observed. The pulmonary arteries from the ISO-treated group showed enhanced relaxation to acetylcholine that was abolished by the NO synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME); whereas relaxation elicited by sodium nitroprusside, ISO, metaproterenol, mirabegron, or KCl was not affected by ISO treatment. ISO-treated rats displayed enhanced endothelial NOS (eNOS) and vasodilator-stimulated phosphoprotein (VASP) expression in the pulmonary arteries, while phosphodiesterase-5 protein expression decreased. ISO treatment increased NO and cGMP levels and did not induce eNOS uncoupling. The present data indicate that β-AR overactivation enhances the endothelium-dependent relaxation of pulmonary arteries. This effect was linked to an increase in eNOS-derived NO production, cGMP formation and VASP content and to a decrease in phosphodiesterase-5 expression. Therefore, elevated NO bioactivity through cGMP/VASP signaling could represent a protective mechanism of β-AR overactivation on pulmonary circulation.