863 resultados para random regression model
Resumo:
Avec la mise en place de la nouvelle limite maximale de 400 000 cellules somatiques par millilitres de lait (c/mL) au réservoir, le mois d’août 2012 a marqué une étape importante en termes de qualité du lait pour les producteurs de bovins laitiers du Canada. L’objectif de cette étude consistait en l’établissement d’un modèle de prédiction de la violation de cette limite au réservoir à l’aide des données individuelles et mensuelles de comptages en cellules somatiques (CCS) obtenues au contrôle laitier des mois précédents. Une banque de donnée DSA comprenant 924 troupeaux de laitiers québécois, en 2008, a été utilisée pour construire un modèle de régression logistique, adapté pour les mesures répétées, de la probabilité d’excéder 400 000 c/mL au réservoir. Le modèle final comprend 6 variables : le pointage linéaire moyen au test précédent, la proportion de CCS > 500 000 c/mL au test précédent, la production annuelle moyenne de lait par vache par jour, le nombre de jours en lait moyen (JEL) au test précédent ainsi que les proportions de vaches saines et de vaches infectées de manière chronique au test précédant. Le modèle montre une excellente discrimination entre les troupeaux qui excèdent ou n’excèdent pas la limite lors d’un test et pourrait être aisément utilisé comme outil supplémentaire de gestion de la santé mammaire à la ferme.
Resumo:
La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.
Resumo:
Robert Bourbeau, département de démographie (Directeur de recherche) Marianne Kempeneers, département de sociologie (Codirectrice de recherche)
Resumo:
This research was undertaken with an objective of studying software development project risk, risk management, project outcomes and their inter-relationship in the Indian context. Validated instruments were used to measure risk, risk management and project outcome in software development projects undertaken in India. A second order factor model was developed for risk with five first order factors. Risk management was also identified as a second order construct with four first order factors. These structures were validated using confirmatory factor analysis. Variation in risk across categories of select organization / project characteristics was studied through a series of one way ANOVA tests. Regression model was developed for each of the risk factors by linking it to risk management factors and project /organization characteristics. Similarly regression models were developed for the project outcome measures linking them to risk factors. Integrated models linking risk factors, risk management factors and project outcome measures were tested through structural equation modeling. Quality of the software developed was seen to have a positive relationship with risk management and negative relationship with risk. The other outcome variables, namely time overrun and cost over run, had strong positive relationship with risk. Risk management did not have direct effect on overrun variables. Risk was seen to be acting as an intervening variable between risk management and overrun variables.
Resumo:
The Doctoral thesis focuses on the factors that influence the weather and climate over Peninsular Indias. The first chapter provides a general introduction about the climatic features over peninsular India, various factors dealt in subsequent chapters, such as solar forcing on climate, SST variability in the northern Indian Ocean and its influence on Indian monsoon, moisture content of the atmosphere and its importance in the climate system, empirical formulation of regression forecast of climate and some aspects of regional climate modeling. Chapter 2 deals with the variability in the vertically integrated moisture (VIM) over Peninsular India on various time scales. The third Chapter discusses the influence of solar activity in the low frequency variability in the rainfall of Peninsular India. The study also investigates the influence of solar activity on the horizontal and vertical components of wind and the difference in the forcing before and after the so-called regime shift in the climate system before and after mid-1970s.In Chapter 4 on Peninsular Indian Rainfall and its association with meteorological and oceanic parameters over adjoining oceanic region, a linear regression model was developed and tested for the seasonal rainfall prediction of Peninsular India.
Resumo:
We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.
Resumo:
Production Planning and Control (PPC) systems have grown and changed because of the developments in planning tools and models as well as the use of computers and information systems in this area. Though so much is available in research journals, practice of PPC is lagging behind and does not use much from published research. The practices of PPC in SMEs lag behind because of many reasons, which need to be explored This research work deals with the effect of identified variables such as forecasting, planning and control methods adopted, demographics of the key person, standardization practices followed, effect of training, learning and IT usage on firm performance. A model and framework has been developed based on literature. Empirical testing of the model has been done after collecting data using a questionnaire schedule administered among the selected respondents from Small and Medium Enterprises (SMEs) in India. Final data included 382 responses. Hypotheses linking SME performance with the use of forecasting, planning and controlling were formed and tested. Exploratory factor analysis was used for data reduction and for identifying the factor structure. High and low performing firms were classified using a Logistic Regression model. A confirmatory factor analysis was used to study the structural relationship between firm performance and dependent variables.
Resumo:
This thesis entitled “Studies on Nitrifying Microorganisms in Cochin Estuary and Adjacent Coastal Waters” reports for the first time the spatial andtemporal variations in the abundance and activity of nitrifiers (Ammonia oxidizingbacteria-AOB; Nitrite oxidizing bacteria- NOB and Ammonia oxidizing archaea-AOA) from the Cochin Estuary (CE), a monsoon driven, nutrient rich tropicalestuary along the southwest coast of India. To fulfil the above objectives, field observations were carried out for aperiod of one year (2011) in the CE. Surface (1 m below surface) and near-bottomwater samples were collected from four locations (stations 1 to 3 in estuary and 4 in coastal region), covering pre-monsoon, monsoon and post-monsoon seasons. Station 1 is a low saline station (salinity range 0-10) with high freshwater influx While stations 2 and 3 are intermediately saline stations (salinity ranges 10-25). Station 4 is located ~20 km away from station 3 with least influence of fresh water and is considered as high saline (salinity range 25- 35) station. Ambient physicochemical parameters like temperature, pH, salinity, dissolved oxygen (DO), Ammonium, nitrite, nitrate, phosphate and silicate of surface and bottom waters were measured using standard techniques. Abundance of Eubacteria, total Archaea and ammonia and nitrite oxidizing bacteria (AOB and NOB) were quantified using Fluorescent in situ Hybridization (FISH) with oligonucleotide probes labeled withCy3. Community structure of AOB and AOA was studied using PCR Denaturing Gradient Gel Electrophoresis (DGGE) technique. PCR products were cloned and sequenced to determine approximate phylogenetic affiliations. Nitrification rate in the water samples were analyzed using chemical NaClO3 (inhibitor of nitrite oxidation), and ATU (inhibitor of ammonium oxidation). Contribution of AOA and AOB in ammonia oxidation process was measured based on the recovered ammonia oxidation rate. The contribution of AOB and AOA were analyzed after inhibiting the activities of AOB and AOA separately using specific protein inhibitors. To understand the factors influencing or controlling nitrification, various statistical tools were used viz. Karl Pearson’s correlation (to find out the relationship between environmental parameters, bacterial abundance and activity), three-way ANOVA (to find out the significant variation between observations), Canonical Discriminant Analysis (CDA) (for the discrimination of stations based on observations), Multivariate statistics, Principal components analysis (PCA) and Step up multiple regression model (SMRM) (First order interaction effects were applied to determine the significantly contributing biological and environmental parameters to the numerical abundance of nitrifiers). In the CE, nitrification is modulated by the complex interplay between different nitrifiers and environmental variables which in turn is dictated by various hydrodynamic characteristics like fresh water discharge and seawater influx brought in by river water discharge and flushing. AOB in the CE are more adapted to varying environmental conditions compared to AOA though the diversity of AOA is higher than AOB. The abundance and seasonality of AOB and NOB is influenced by the concentration of ammonia in the water column. AOB are the major players in modulating ammonia oxidation process in the water column of CE. The distribution pattern and seasonality of AOB and NOB in the CE suggest that these organisms coexist, and are responsible for modulating the entire nitrification process in the estuary. This process is fuelled by the cross feeding among different nitrifiers, which in turn is dictated by nutrient levels especially ammonia. Though nitrification modulates the increasing anthropogenic ammonia concentration the anthropogenic inputs have to be controlled to prevent eutrophication and associated environmental changes.
Resumo:
Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.
Resumo:
The presented thesis considered three different system approach topics to ensure yield and plant health in organically grown potatoes and tomatoes. The first topic describes interactions between late blight (Phytophthora infestans) incidence and soil nitrogen supply on yield in organic potato farming focussing in detail on the yield loss relationship of late blight based on results of several field trials. The interactive effects of soil N-supply, climatic conditions and late blight on the yield were studied in the presence and absence of copper fungicides from 2002-2004 for the potato cultivar Nicola. Under conditions of central Germany the use of copper significantly reduced late blight in almost all cases (15-30 %). However, the reductions in disease through copper application did not result in statistically significant yield increases (+0 – +10 %). Subsequently, only 30 % of the variation in yield could be attributed to disease reductions. A multiple regression model (R²Max), however, including disease reduction, growth duration and temperature sum from planting until 60 % disease severity was reached and soil mineral N contents 10 days after emergence could explain 75 % of the observed variations in yield. The second topic describes the effect of some selected organic fertilisers and biostimulant products on nitrogen-mineralization and efficiency, yield and diseases in organic potato and tomato trials. The organic fertilisers Biofeed Basis (BFB, plant derived, AgroBioProducts, Wageningen, Netherlands) and BioIlsa 12,5 Export (physically hydrolysed leather shavings, hair and skin of animals; ILSA, Arizignano, Italy) and two biostimulant products BioFeed Quality (BFQ, multi-compound seaweed extract, AgroBioProducts) and AUSMA (aqueous pine and spruce needle extract, A/S BIOLAT, Latvia), were tested. Both fertilisers supplied considerable amounts of nitrogen during the main uptake phases of the crops and reached yields as high or higher as compared to the control with horn meal fertilisation. The N-efficiency of the tested fertilisers in potatoes ranged from 90 to 159 kg yield*kg-1 N – input. Most effective with tomatoes were the combined treatments of fertiliser BFB and the biostimulants AUSMA and BFQ. Both biostimulants significantly increased the share of healthy fruit and/or the number of fruits. BFQ significantly increased potato yields (+6 %) in one out of two years and reduced R. solani-infestation in the potatoes. This suggests that the biostimulants had effects on plant metabolism and resistance properties. However, no effects of biostimulants on potato late blight could be observed in the fields. The third topic focused on the effect of suppressive composts and seed tuber health on the saprophytic pathogen Rhizoctonia solani in organic potato systems. In the present study 5t ha-1 DM of a yard and bio-waste (60/40) compost produced in a 5 month composting process and a 15 month old 100 % yard waste compost were used to assess the effects on potato infection with R. solani when applying composts within the limits allowed. Across the differences in initial seed tuber infestation and 12 cultivars 5t DM ha-1 of high quality composts, applied in the seed tuber area, reduced the infestation of harvested potatoes with black scurf, tuber malformations and dry core tubers by 20 to 84 %, 20 to 49 % and 38 to 54 %, respectively, while marketable yields were increased by 5 to 25 % due to lower rates of wastes after sorting (marketable yield is gross yield minus malformed tubers, tubers with dry core, tubers with black scurf > 15% infested skin). The rate of initial black scurf infection of the seed tubers also affected tuber number, health and quality significantly. Compared to healthy seed tubers initial black scurf sclerotia infestation of 2-5 and >10 % of tuber surface led in untreated plots to a decrease in marketable yields by 14-19 and 44-66 %, a increase of black scurf severity by 8-40 and 34-86 % and also increased the amount of malformed and dry core tubers by 32-57 and 109-214 %.
Resumo:
In dieser Arbeit wird ein Verfahren zum Einsatz neuronaler Netzwerke vorgestellt, das auf iterative Weise Klassifikation und Prognoseschritte mit dem Ziel kombiniert, bessere Ergebnisse der Prognose im Vergleich zu einer einmaligen hintereinander Ausführung dieser Schritte zu erreichen. Dieses Verfahren wird am Beispiel der Prognose der Windstromerzeugung abhängig von der Wettersituation erörtert. Eine Verbesserung wird in diesem Rahmen mit einzelnen Ausreißern erreicht. Verschiedene Aspekte werden in drei Kapiteln diskutiert: In Kapitel 1 werden die verwendeten Daten und ihre elektronische Verarbeitung vorgestellt. Die Daten bestehen zum einen aus Windleistungshochrechnungen für die Bundesrepublik Deutschland der Jahre 2011 und 2012, welche als Transparenzanforderung des Erneuerbaren Energiegesetzes durch die Übertragungsnetzbetreiber publiziert werden müssen. Zum anderen werden Wetterprognosen, die der Deutsche Wetterdienst im Rahmen der Grundversorgung kostenlos bereitstellt, verwendet. Kapitel 2 erläutert zwei aus der Literatur bekannte Verfahren - Online- und Batchalgorithmus - zum Training einer selbstorganisierenden Karte. Aus den dargelegten Verfahrenseigenschaften begründet sich die Wahl des Batchverfahrens für die in Kapitel 3 erläuterte Methode. Das in Kapitel 3 vorgestellte Verfahren hat im modellierten operativen Einsatz den gleichen Ablauf, wie eine Klassifikation mit anschließender klassenspezifischer Prognose. Bei dem Training des Verfahrens wird allerdings iterativ vorgegangen, indem im Anschluss an das Training der klassenspezifischen Prognose ermittelt wird, zu welcher Klasse der Klassifikation ein Eingabedatum gehören sollte, um mit den vorliegenden klassenspezifischen Prognosemodellen die höchste Prognosegüte zu erzielen. Die so gewonnene Einteilung der Eingaben kann genutzt werden, um wiederum eine neue Klassifikationsstufe zu trainieren, deren Klassen eine verbesserte klassenspezifisch Prognose ermöglichen.
Resumo:
Enhancement of financial inclusivity of rural communities is often recognised as a key strategy for achieving economic development in third world countries. The main objective of this study was to examine the factors that influence consumers’ choice of a rural bank in Gicumbi district of Rwanda. Data was collected using structured questionnaires and analysed using a binary probit regression model and non-parametric procedures. Most consumers were aware of Popular Bank of Rwanda (BPR) and Umurenge SACCO through radio advertisements, social networks and community meetings. Accessibility, interest rates and quality of services influenced choice of a given financial intermediary. Moreover, the decision to open a rural bank account was significantly influenced by education and farm size (p<0.1). These results indicate the need for financial managers to consider these findings for successful marketing campaigns.
Resumo:
This study analyzes the linear relationship between climate variables and milk components in Iran by applying bootstrapping to include and assess the uncertainty. The climate parameters, Temperature Humidity Index (THI) and Equivalent Temperature Index (ETI) are computed from the NASA-Modern Era Retrospective-Analysis for Research and Applications (NASA-MERRA) reanalysis (2002–2010). Milk data for fat, protein (measured on fresh matter bases), and milk yield are taken from 936,227 milk records for the same period, using cows fed by natural pasture from April to September. Confidence intervals for the regression model are calculated using the bootstrap technique. This method is applied to the original times series, generating statistically equivalent surrogate samples. As a result, despite the short time data and the related uncertainties, an interesting behavior of the relationships between milk compound and the climate parameters is visible. During spring only, a weak dependency of milk yield and climate variations is obvious, while fat and protein concentrations show reasonable correlations. In summer, milk yield shows a similar level of relationship with ETI, but not with temperature and THI. We suggest this methodology for studies in the field of the impacts of climate change and agriculture, also environment and food with short-term data.
Resumo:
The main objective of this thesis was to determine the potential impact of heat stress (HS) on physiological traits of lactating cows and semen quality of bulls kept in a temperate climate. The thesis is comprised of three studies. An innovative statistical modeling aspect common to all three studies was the application of random regression methodology (RRM) to study the phenotypic and genetic trajectory of traits in dependency of a continuous temperature humidity index (THI). In the first study, semen quality and quantity traits of 562 Holstein sires kept on an AI station in northwestern Germany were analyzed in the course of THI calculated from data obtained from the nearest weather station. Heat stress was identified based on a decline in semen quality and quantity parameters. The identified general HS threshold (THI = 60) and the thermoneutal zone (THI in the range from 50 to 60) for semen production were lower than detected in studies conducted in tropical and subtropical climates. Even though adult bulls were characterized by higher semen productivity compared to younger bulls, they responded with a stronger semen production loss during harsh environments. Heritabilities (low to moderate range) and additive genetic variances of semen characteristics varied with different levels of THI. Also, based on genetic correlations genotype, by environment interactions were detected. Taken together, these findings suggest the application of specific selection strategies for specific climate conditions. In the second study, the effect of the continuous environmental descriptor THI as measured inside the barns on rectal temperatures (RT), skin temperatures (ST), vaginal temperatures (VT), respiration rates (RR), and pulse rate (PR) of lactating Holstein Friesian (HF) and dual-purpose German black pied cattle (DSN) was analyzed. Increasing HS from THI 65 (threshold) to THI 86 (maximal THI) resulted in an increase of RT by 0.6 °C (DSN) and 1 °C (HF), ST by 3.5 °C (HF) and 8 °C (DSN), VT by 0.3 °C (DSN), and RR by 47 breaths / minute (DSN), and decreased PR by 7 beats / minute (DSN). The undesired effects of rising THI on physiological traits were most pronounced for cows with high levels of milk yield and milk constituents, cows in early days in milk and later parities, and during summer seasons in the year 2014. In the third study of this dissertation, the genetic components of the cow’s physiological responses to HS were investigated. Heat stress was deduced from indoor THI measurements, and physiological traits were recorded on native DSN cows and their genetically upgraded crosses with Holstein Friesian sires in two experimental herds from pasture-based production systems reflecting a harsh environment of the northern part of Germany. Although heritabilities were in a low range (from 0.018 to 0.072), alterations of heritabilities, repeatabilities, and genetic components in the course of THI justify the implementation of genetic evaluations including heat stress components. However, low repeatabilities indicate the necessity of using repeated records for measuring physiological traits in German cattle. Moderate EBV correlations between different trait combinations indicate the potential of selection for one trait to simultaneously improve the other physiological attributes. In conclusion, bulls of AI centers and lactating cows suffer from HS during more extreme weather conditions also in the temperate climate of Northern Germany. Monitoring physiological traits during warm and humid conditions could provide precious information for detection of appropriate times for implementation of cooling systems and changes in feeding and management strategies. Subsequently, the inclusion of these physiological traits with THI specific breeding values into overall breeding goals could contribute to improving cattle adaptability by selecting the optimal animal for extreme hot and humid conditions. Furthermore, the recording of meteorological data in close distance to the cow and visualizing the surface body temperature by infrared thermography techniques might be helpful for recognizing heat tolerance and adaptability in cattle.
Resumo:
In this article we compare regression models obtained to predict PhD students’ academic performance in the universities of Girona (Spain) and Slovenia. Explanatory variables are characteristics of PhD student’s research group understood as an egocentered social network, background and attitudinal characteristics of the PhD students and some characteristics of the supervisors. Academic performance was measured by the weighted number of publications. Two web questionnaires were designed, one for PhD students and one for their supervisors and other research group members. Most of the variables were easily comparable across universities due to the careful translation procedure and pre-tests. When direct comparison was not possible we created comparable indicators. We used a regression model in which the country was introduced as a dummy coded variable including all possible interaction effects. The optimal transformations of the main and interaction variables are discussed. Some differences between Slovenian and Girona universities emerge. Some variables like supervisor’s performance and motivation for autonomy prior to starting the PhD have the same positive effect on the PhD student’s performance in both countries. On the other hand, variables like too close supervision by the supervisor and having children have a negative influence in both countries. However, we find differences between countries when we observe the motivation for research prior to starting the PhD which increases performance in Slovenia but not in Girona. As regards network variables, frequency of supervisor advice increases performance in Slovenia and decreases it in Girona. The negative effect in Girona could be explained by the fact that additional contacts of the PhD student with his/her supervisor might indicate a higher workload in addition to or instead of a better advice about the dissertation. The number of external student’s advice relationships and social support mean contact intensity are not significant in Girona, but they have a negative effect in Slovenia. We might explain the negative effect of external advice relationships in Slovenia by saying that a lot of external advice may actually result from a lack of the more relevant internal advice