1000 resultados para quantum memory
Resumo:
BACKGROUND: Epidemiological studies show that up to 10% of individuals aged 65 years and older suffer from dementia, most commonly from dementia of the Alzheimer Type (DAT) (1). Clinicopathological studies are critical to our understanding of this disease and improving the accuracy of clinical diagnoses. OBJECTIVES: Our objectives were to examine the validity of clinical diagnoses of DAT, to determine the prevalence of different forms of dementia in this sample, and to investigate the relationship between age at death and polymorbidity. SUBJECTS AND METHOD: Clinical data were available from 221 patients who had been examined at the Basel Memory Clinic between 1986 and 1996. From this population, 34% (75 patients) were autopsied in the Department of Pathology, University Hospital Basel, and neuropathological examinations were additionally performed on 62 (83%) of these patients. Clinical and neuropathological data were retrospectively compared. RESULTS: 67.8% of the neuropathologically examined patients received a definitive diagnosis of AD (Alzheimer's disease), vascular dementia (VaD) or mixed dementia (AD and VaD). AD alone or with other histopathological hallmarks of dementia was the most prevalent neuropathological diagnosis (63%). VaD was deemed the only cause of dementia in only 4.8% of patients. The sensitivity for DAT was 75.9%, the specificity 60.6%. Increasing age was associated with an increasing number of clinical and neuropathological diagnoses. CONCLUSION: The sensitivity and specificity of the clinical diagnoses of DAT found in our study are similar to previous reports (2-5). Older patients had more etiologies of their dementia than younger patients. This study reaffirms the need for internationally accepted criteria for clinical and neuropathological diagnoses, as well as further clinical-neuropathological investigations to further refine the clinical diagnostic process.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Neuropsychological and neuroimaging data suggest that the self-memory system can be fractionated into three functionally independent systems processing personal information at several levels of abstraction, including episodic memories of one's life (episodic autobiographical memory, EAM), semantic knowledge of facts about one's life (semantic autobiographical memory, SAM), and semantic knowledge of one's personality [conceptual self, (CS)]. Through the study of two developmental amnesic patients suffering of neonatal brain injuries, we explored how the different facets of the self-memory system develop when growing up with bilateral hippocampal atrophy. Neuropsychological evaluations showed that both of them suffered from dramatic episodic learning disability with no sense of recollection (Remember/Know procedure), whereas their semantic abilities differed, being completely preserved (Valentine) or not (Jocelyn). Magnetic resonance imaging, including quantitative volumetric measurements of the hippocampus and adjacent (entorhinal, perirhinal, and temporopolar) cortex, showed severe bilateral atrophy of the hippocampus in both patients, with additional atrophy of adjacent cortex in Jocelyn. Exploration of EAM and SAM according to lifetime periods covering the entire lifespan (TEMPAu task, Piolino et al., 2009) showed that both patients had marked impairments in EAM, as they lacked specificity, details and sense of recollection, whereas SAM was completely normal in Valentine, but impaired in Jocelyn. Finally, measures of patients' CS (Tennessee Self-Concept Scale, Fitts and Warren, 1996), checked by their mothers, were generally within normal range, but both patients showed a more positive self-concept than healthy controls. These two new cases support a modular account of the medial-temporal lobe with episodic memory and recollection depending on the hippocampus, and semantic memory and familiarity on adjacent cortices. Furthermore, they highlight developmental episodic and semantic functional independence within the self-memory system suggesting that SAM and CS may be acquired without episodic memories.
Resumo:
Optimal vaccine strategies must be identified for improving T-cell vaccination against infectious and malignant diseases. MelQbG10 is a virus-like nano-particle loaded with A-type CpG-oligonucleotides (CpG-ODN) and coupled to peptide(16-35) derived from Melan-A/MART-1. In this phase IIa clinical study, four groups of stage III-IV melanoma patients were vaccinated with MelQbG10, given (i) with IFA (Montanide) s.c.; (ii) with IFA s.c. and topical Imiquimod; (iii) i.d. with topical Imiquimod; or (iv) as intralymph node injection. In total, 16/21 (76%) patients generated ex vivo detectable Melan-A/MART-1-specific T-cell responses. T-cell frequencies were significantly higher when IFA was used as adjuvant, resulting in detectable T-cell responses in all (11/11) patients, with predominant generation of effector-memory-phenotype cells. In turn, Imiquimod induced higher proportions of central-memory-phenotype cells and increased percentages of CD127(+) (IL-7R) T cells. Direct injection of MelQbG10 into lymph nodes resulted in lower T-cell frequencies, associated with lower proportions of memory and effector-phenotype T cells. Swelling of vaccine site draining lymph nodes, and increased glucose uptake at PET/CT was observed in 13/15 (87%) of evaluable patients, reflecting vaccine triggered immune reactions in lymph nodes. We conclude that the simultaneous use of both Imiquimod and CpG-ODN induced combined memory and effector CD8(+) T-cell responses.
Resumo:
Multisensory processes facilitate perception of currently-presented stimuli and can likewise enhance later object recognition. Memories for objects originally encountered in a multisensory context can be more robust than those for objects encountered in an exclusively visual or auditory context [1], upturning the assumption that memory performance is best when encoding and recognition contexts remain constant [2]. Here, we used event-related potentials (ERPs) to provide the first evidence for direct links between multisensory brain activity at one point in time and subsequent object discrimination abilities. Across two experiments we found that individuals showing a benefit and those impaired during later object discrimination could be predicted by their brain responses to multisensory stimuli upon their initial encounter. These effects were observed despite the multisensory information being meaningless, task-irrelevant, and presented only once. We provide critical insights into the advantages associated with multisensory interactions; they are not limited to the processing of current stimuli, but likewise encompass the ability to determine the benefit of one's memories for object recognition in later, unisensory contexts.
Resumo:
OBJECTIVE: To identify biological evidence for Alzheimer disease (AD) in individuals with subjective memory impairment (SMI) and unimpaired cognitive performance and to investigate the longitudinal cognitive course in these subjects. METHOD: [¹⁸F]fluoro-2-deoxyglucose PET (FDG-PET) and structural MRI were acquired in 31 subjects with SMI and 56 controls. Cognitive follow-up testing was performed (average follow-up time: 35 months). Differences in baseline brain imaging data and in memory decline were assessed between both groups. Associations of memory decline with brain imaging data were tested. RESULTS: The SMI group showed hypometabolism in the right precuneus and hypermetabolism in the right medial temporal lobe. Gray matter volume was reduced in the right hippocampus in the SMI group. At follow-up, subjects with SMI showed a poorer performance than controls on measures of episodic memory. Longitudinal memory decline in the SMI group was associated with reduced glucose metabolism in the right precuneus at baseline. CONCLUSION: The cross-sectional difference in 2 independent neuroimaging modalities indicates early AD pathology in SMI. The poorer memory performance at follow-up and the association of reduced longitudinal memory performance with hypometabolism in the precuneus at baseline support the concept of SMI as the earliest manifestation of AD.
Resumo:
T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses. Together these assays indicated a high energy efficiency of the high crawling frequency CD8+ T-cell population, and identified differentially regulated heat production among nonlymphoid versus lymphoid homing CD8+ T cells.
Resumo:
The immune system relies on homeostatic mechanisms in order to adapt to the changing requirements encountered during steady-state existence and activation by antigen. For T cells, this involves maintenance of a diverse repertoire of naïve cells, rapid elimination of effector cells after pathogen clearance, and long-term survival of memory cells. The reduction of T-cell counts by either cytotoxic drugs, irradiation, or certain viruses is known to lead to lymphopenia-induced proliferation and restoration of normal T-cell levels. Such expansion is governed by the interaction of TCR with self-peptide/MHC (p/MHC) molecules plus contact with cytokines, especially IL-7. These same ligands, i.e. p/MHC molecules and IL-7, maintain naïve T lymphocytes as resting cells under steady-state T-cell-sufficient conditions. Unlike naïve cells, typical "central" memory T cells rely on a combination of IL-7 and IL-15 for their survival in interphase and for occasional cell division without requiring signals from p/MHC molecules. Other memory T-cell subsets are less quiescent and include naturally occurring activated memory-phenotype cells, memory cells generated during chronic viral infections, and effector memory cells. These subsets of activated memory cells differ from central memory T cells in their requirements for homeostatic proliferation and survival. Thus, the factors controlling T-cell homeostasis can be seen to vary considerably from one subset to another as described in detail in this review.
Resumo:
Increasing evidence suggests that working memory and perceptual processes are dynamically interrelated due to modulating activity in overlapping brain networks. However, the direct influence of working memory on the spatio-temporal brain dynamics of behaviorally relevant intervening information remains unclear. To investigate this issue, subjects performed a visual proximity grid perception task under three different visual-spatial working memory (VSWM) load conditions. VSWM load was manipulated by asking subjects to memorize the spatial locations of 6 or 3 disks. The grid was always presented between the encoding and recognition of the disk pattern. As a baseline condition, grid stimuli were presented without a VSWM context. VSWM load altered both perceptual performance and neural networks active during intervening grid encoding. Participants performed faster and more accurately on a challenging perceptual task under high VSWM load as compared to the low load and the baseline condition. Visual evoked potential (VEP) analyses identified changes in the configuration of the underlying sources in one particular period occurring 160-190 ms post-stimulus onset. Source analyses further showed an occipito-parietal down-regulation concurrent to the increased involvement of temporal and frontal resources in the high VSWM context. Together, these data suggest that cognitive control mechanisms supporting working memory may selectively enhance concurrent visual processing related to an independent goal. More broadly, our findings are in line with theoretical models implicating the engagement of frontal regions in synchronizing and optimizing mnemonic and perceptual resources towards multiple goals.
Resumo:
There has been a lack of quick, simple and reliable methods for determination of nanoparticle size. An investigation of the size of hydrophobic (CdSe) and hydrophilic (CdSe/ZnS) quantum dots was performed by using the maximum position of the corresponding fluorescence spectrum. It has been found that fluorescence spectroscopy is a simple and reliable methodology to estimate the size of both quantum dot types. For a given solution, the homogeneity of the size of quantum dots is correlated to the relationship between the fluorescence maximum position (FMP) and the quantum dot size. This methodology can be extended to the other fluorescent nanoparticles. The employment of evolving factor analysis and multivariate curve resolution-alternating least squares for decomposition of the series of quantum dots fluorescence spectra recorded by a specific measuring procedure reveals the number of quantum dot fractions having different diameters. The size of the quantum dots in a particular group is defined by the FMP of the corresponding component in the decomposed spectrum. These results show that a combination of the fluorescence and appropriate statistical method for decomposition of the emission spectra of nanoparticles may be a quick and trusted method for the screening of the inhomogeneity of their solution.
Resumo:
Résumé pour un large public: La vaccination a eu un impact énorme sur la santé mondiale. Mais, quel est le principe d'un vaccin? Il est basé sur la 'mémoire immunologique', qui est une particularité exclusive des systèmes immunitaires des organismes évolués. Suite à une infection par un pathogène, des cellules spécialisées de notre système immunitaire (les lymphocytes) le reconnaissent et initient une réaction immunitaire qui a pour but son élimination. Pendant cette réaction se développent aussi des cellules, appelées cellules lymphocytaires mémoire, qui persistent pour longue durée et qui ont la capacité de stimuler une réaction immunitaire très efficace immédiatement après une seconde exposition à ce même pathogène. Ce sont ces cellules mémoires (lymphocytes B et T) qui sont à la base de la 'mémoire immunologique' et qui sont stimulées lors de la vaccination. Chez l'homme, deux populations distinctes des lymphocytes T mémoires ont été identifiées: les cellules centrales (CM) et effectrices (EM) mémoires. Ces populations sont fonctionnellement hétérogènes et exercent des rôles distincts et essentiels dans l'immunité protectrice. Typiquement, les cellules effectrices mémoires sont capables de tuer immédiatement le pathogène tandis que les cellules centrales mémoires sont responsables d'initier une réponse immunitaire complète. Pourtant, les mécanismes biochimiques qui contrôlent les fonctions de ces cellules ont été jusqu'à présent peu étudiés à cause de la faible fréquence de ces cellules et de la quantité limitée de tissus humains disponibles pour les analyses. La compréhension de ces mécanismes est cruciale pour la réalisation de vaccins efficaces et pour le développement de nouveaux médicaments capables de moduler la réponse immunitaire lymphocytaire. Dans cette thèse, nous avons d'abord développé et amélioré une technologie appelée 'protéine array en phase inverse' qui possède un niveau de sensibilité beaucoup plus élevé par rapport aux technologies classiquement utilisées dans l'étude des protéines. Grâce à cette technique, nous avons pu comparer la composition protéique du système de transmission des signaux d'activation des cellules CM et EM humaines. L'analyse de 8 à 13 sujets sains a montré que ces populations des cellules mémoires possèdent un système de signalisation protéique différent. En effet, les cellules EM possèdent, par rapport aux cellules CM, des niveaux réduits d'une protéine régulatrice (appelée c-Cbl) que nous avons démontré comme étant responsable des fonctions spécifiques de ces cellules. En effet, en augmentant artificiellement l'expression de cette protéine régulatrice dans les cellules EM jusqu'au niveau de celui des cellules CM, nous avons induit dans les cellules EM des capacités fonctionnelles caractéristiques des cellules CM. En conclusion, notre étude a identifié, pour la première fois chez l'homme, un mécanisme biochimique qui contrôle les fonctions des populations des cellules mémoires. Résumé en Français: Les cellules mémoires persistent inertes dans l'organisme et produisent des réactions immunitaires rapides et robustes contre les pathogènes précédemment rencontrés. Deux populations distinctes des cellules mémoires ont été identifiées chez l'homme: les cellules centrales (CM) et effectrices (EM) mémoires. Ces populations sont fonctionnellement hétérogènes et exercent des rôles distincts et critiques dans l'immunité protectrice. Les mécanismes biochimiques qui contrôlent leurs fonctions ont été jusqu'à présent peu étudiés, bien que leur compréhension soit cruciale pour le développement des vaccins et des nouveaux traitements/médicaments. Les limites majeures à ces études sont la faible fréquence de ces populations et la quantité limitée de tissus humains disponibles. Dans cette thèse nous avons d'abord développé et amélioré la technologie de 'protéine array en phase inverse' afin d'analyser les molécules de signalisation des cellules mémoires CD4 et CD8 humaines isolées ex vivo. L'excellente sensibilité, la reproductibilité et la linéarité de la détection, ont permis de quantifier des variations d'expression protéiques supérieures à 20% dans un lysat équivalent à 20 cellules. Ensuite, grâce à l'analyse de 8 à 13 sujets sains, nous avons prouvé que les cellules mémoires CD8 ont une composition homogène de leur système de signalisation tandis que les cellules CD4 EM expriment significativement de plus grandes quantités de SLP-76 et des niveaux réduits de c-Cbl, Syk, Fyn et LAT par rapport aux cellules CM. En outre, l'expression réduite du régulateur négatif c-Cbl est corrélée avec l'expression des SLP-76, PI3K et LAT uniquement dans les cellules EM. L'évaluation des propriétés fonctionnelles des cellules mémoires a permis de démontrer que l'expression réduite du c-Cbl dans les cellules EM est associé à une diminution de leur seuil d'activation. En effet, grâce a la technique de transduction cytosolique, nous avons augmenté la quantité de c-Cbl des cellules EM à un niveau comparable à celui des cellules CM et constaté une réduction de la capacité des cellules EM à proliférer et sécréter des cytokines. Ce mécanisme de régulation dépend principalement de l'activité d'ubiquitine ligase de c-Cbl comme démontré par l'impact réduit du mutant enzymatiquement déficient de c-Cbl sur les fonctions de cellules EM. En conclusion, cette thèse identifie c-Cbl comme un régulateur critique des réponses fonctionnelles des populations de cellules T mémoires et fournit, pour la première fois chez l'homme, un mécanisme contrôlant l'hétérogénéité fonctionnelle des ces cellules. De plus, elle valide l'utilisation combinée des 'RPP arrays' et de la transduction cytosolique comme outil puissant d'analyse quantitative et fonctionnel des protéines de signalisation. Summary : Memory cells persist in a quiescent state in the body and mediate rapid and vigorous immune responses toward pathogens previously encountered. Two subsets of memory cells, namely central (CM) and effector (EM) memory cells, have been identified in humans. These subsets display high functional heterogeneity and assert critical and distinct roles in the control of protective immunity. The biochemical mechanisms controlling their functional properties remain so far poorly investigated, although their clarification is crucial for design of effective T-cell vaccine and drug development. Major limitations to these studies lie in the low frequency of memory T cell subsets and the limited amount of human specimen available. In this thesis we first implemented the innovative reverse phase protein array approach to profile 15 signalling components in human CD8 and CD4 memory T cells isolated ex vivo. The high degree of sensitivity, reproducibility and linearity achieved, allowed an excellent quantification of variations in protein expression higher than 20% in as few as 20-cell equivalent per spot. Based on the analysis of 8 to 13 healthy subjects, we showed that CD8 memory cells have a homogeneous composition of their signaling machinery while CD4 EM cells express statistically significant increased amounts of SLP-76 and reduced levels of c- Cbl, Syk, Fyn and LAT as compared to CM cells. Moreover, in EM but not CM cells, reduced expression of negative regulator c-Cbl correlated with the expression of SLP-76, PI3K and LAT. Subsequently, we demonstrated that the higher functional properties and the lower functional threshold of EM cells is associated with reduced expression of c-Cbl. Indeed, by increasing c-Cbl content of EM cells to the same level of CM cells using cytosolic transduction, we impaired their proliferation and cytokine production. This regulatory mechanism was primarily dependent on c-Cbl E3 ubiquitin ligase activity as evidenced by the weaker impact of enzymatically deficient c-Cbl C381A mutant on EM cell functions. Together, these results identify c-Cbl as a critical regulator of the functional responses of memory T cell subsets and provides, for the first time in humans, a mechanism controlling the functional heterogeneity of memory CD4 cells. Moreover it validates the combined use of RPP arrays and cytosolic transduction approaches as a powerful tool to quantitatively analyze signalling proteins and functionally assess their roles.