951 resultados para quantum chemistry hydrogen bond liquid crystal parallelisation decomposition
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We theoretically investigated how the formation of oxygen vacancies and the addition of niobium and chromium atoms as dopants modify the varistor properties of TiO2. The calculations were carried out at the HF level using a contracted basis set, developed by Huzinaga et al.. to represent the atomic centers on the (110) surface for the large (TiO2)(15) cluster model. The change of the values for the net atomic charges and band gap after oxygen vacancy formation and the presence of dopants in the lattice are analyzed and discussed. It is shown that the formation of oxygen vacancies decreases the band gap while an opposite effect is found when dopants are located in the reduced surface. The theoretical results are compared with available experimental data. A plausible explanation of the varistor behavior of this system is proposed. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We describe a new physicochemical descriptor of the antioxidant activity of phenols, the energy difference between the two highest occupied molecular orbitals, which we believe will improve quantitative structure-activity relationship studies about these compounds. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Ab initio calculations of large cluster models have been performed in order to study water adsorption at the five-fold coordinated adsorption site on pure Mg(001) and MgO(001) surfaces doped with Fe, Ca, and Al. The geometric parameters of the adsorbed water molecule have been optimized preparatory to analysis of binding energies, charge transfer, preferential sites of interaction, and bonding distances. We have used Mulliken population analysis methods in order to analyze charge distributions and the direction of charge transfer. We have also investigated energy gaps, HOMO energies, and SCF orbital energies as well as the acid-base properties of our cluster model. Numerical results are compared, where possible, with experiment and interpreted in the framework of various analytical models. (C) 2001 John Wiley & Sons, Inc.
Resumo:
In this work we intend to study a class of time-dependent quantum systems with non-Hermitian Hamiltonians, particularly those whose Hermitian counterparts are important for the comprehension of posed problems in quantum optics and quantum chemistry. They consist of an oscillator with time-dependent mass and frequency under the action of a time-dependent imaginary potential. The wave functions are used to obtain the expectation value of the Hamiltonian. Although it is neither Hermitian nor PT symmetric, the Hamiltonian under study exhibits real values of energy.
Resumo:
Sm-doped PbTiO3 powder was synthesized by the polymeric precursor method, and was heat treated at different temperatures. The x-ray diffraction, photoluminescence, and UV-visible were used as a probe for the structural order degree short-, intermediate-, and long-range orders. Sm-3+ ions were used as markers of these order-disorder transformations in the PbTiO3 system. From the Rietveld refinement of the Sm-doped PbTiO3 x-ray diffraction data, structural models were obtained and analyzed by periodic ab initio quantum mechanical calculations using the CRYSTAL 98 package within the framework of density functional theory at the B3LYP level. This program can yield important information regarding the structural and electronic properties of crystalline and disordered structures. The experimental and theoretical results indicate the presence of the localized states in the band gap, due to the symmetry break, which is responsible for visible photoluminescence at room temperature in the disordered structure. (c) 2006 American Institute of Physics.
Resumo:
This article reports a theoretical study based on experimental results for barium zirconate, BaZrO3 (BZ) thin films, using periodic mechanic quantum calculations to analyze the symmetry change in a structural order-disorder simulation. Four periodic models were simulated using CRYSTAL98 code to represent the ordered and disordered BZ structures. The results were analyzed in terms of the energy level diagrams and atomic orbital distributions to explain and understand the BZ photoluminescence properties (PL) at room temperature for the disordered structure based on structural deformation and symmetry changes. (C) 2009 Wiley Periodicals, Inc. Int J Quantum Chem 111: 694-701, 2011
Resumo:
Structural characterization by NMR spectroscopy and DFT calculations was performed for two dimeric naptho-gamma-pyrones, the polyketides Aurasperone A and Fonsecinone A. Experimental data ((13)C NMR chemical shifts and interatomic geometries) were found to be in reasonable agreement with theoretical ones, obtained at B3LYP level for three different basis sets (6-31G/6-31G(d)/6-31G(d,p)). Additionally, the dipolar moments calculation allowed explaining the different solubility for these molecules. The (13)C NMR theoretical chemical shifts were calculated with the GIAO method and the solvent effects were taken into account by means of the PCM approximation. In this work, the DFT/GIAO methodology shows to be a reliable tool in the assignment of experimental NMR chemical shifts of similar molecules. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 108: 2408-2416, 2008.
Resumo:
The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.
Resumo:
In this study the preparation of 9.5/65/35 PLZT ceramic powders were investigated. The powders with the formula Pb0.905La0.095(Zr0.65 Ti0.35)0.976O3 + 3.5 w% PbO were prepared using Pechini process and partial oxalate method. The powder phase formation, powder morphology, and green density of PLZT were shown.
Resumo:
A combined theoretical and experimental study to elucidate the molecular mechanism for the Grob fragmentation of different (N-halo)-2-amino cyclocarboxylates with the nitrogen atom in exocyclic position: (N-Cl)-2-amino cyclopropanecarboxylate (1), (N-Cl)-2-amino cyclobutanecarboxylate (2), (N-Cl)-2-amino cyclopentanecarboxylate (3) and (N-Cl)-2-amino cyclohexanecarboxylate (4), and the corresponding acyclic compounds, (N-Cl)-2-amino isobutyric acid (A), (N-Cl)-2-amino butyric acid (B), has been carried out. The kinetics of decomposition for these compounds and related bromine derivatives were experimentally determined by conventional and stopped-flow UV spectrophotometry. The reaction products have been analyzed by GC and spectrophotometry. Theoretical analysis is based in the localization of stationary points (reactants and transition structures) on the potential energy surface. Calculations were carried out at B3LYP/6-31+G* and MP2/6-31+G* computing methods in the gas phase, while solvent effects have been included by means the self-consistent reaction field theory, PCM continuum model, at MP2/6-31+G* and MP4/6-31+G*//MP2/6-31+G* calculation levels. Based on both experimental and theoretical results, the different Grob fragmentation processes show a global synchronicity index close to 0.9, corresponding to a nearly concerted process. At the TSs, the N-Cl bond breaking is more advanced than the C-C cleavage process. An antiperiplanar configuration of these bonds is reached at the TSs, and this geometrical arrangement is the key factor governing the decomposition. In the case of 1 and 2 the ring strain prevents this spatial disposition, leading to a larger value of the activation barrier. Natural population analysis shows that the polarization of the N-Cl and C-C bonds along the bond-breaking process can be considered the driving force for the decomposition and that a negative charge flows from the carboxylate group to the chlorine atom to assist the reaction pathway. A comparison of theoretical and experimental results shows the relevance of calculation level and the inclusion of solvent effects for determining accurate unimolecular rate coefficients for the decomposition process. © 2002 Published by Elsevier Science B.V.
Resumo:
Tuberculosis (TB) resurged in the late 1980s and now kills approximately 3 million people a year. The reemergence of tuberculosis as a public health threat has created a need to develop new anti-mycobacterial agents. The shikimate pathway is an attractive target for herbicides and anti-microbial agents development because it is essential in algae, higher plants, bacteria, and fungi, but absent from mammals. Homologs to enzymes in the shikimate pathway have been identified in the genome sequence of Mycobacterium tuberculosis. Among them, the shikimate kinase I encoding gene (aroK) was proposed to be present by sequence homology. Accordingly, to pave the way for structural and functional efforts towards anti-mycobacterial agents development, here we describe the molecular modeling of M. tuberculosis shikimate kinase that should provide a structural framework on which the design of specific inhibitors may be based. © 2002 Elsevier Science (USA). All rights reserved.