936 resultados para qualitative data analysis
Resumo:
The evaluation’s overarching question was “Did the activities undertaken through the state’s LSTA plan achieve results related to priorities identified in the Act?” The evaluation was conducted and is organized according to the six LSTA priorities. The research design employed two major methodologies: 1. Data sources from Iowa Library Services / State Library of Iowa2 as well as U.S and state sources were indentified for quantitative analysis. These sources, which primarily reflect outputs for various projects, included: Statistics from the Public Library Annual Survey Statistics collected internally by Iowa Library Services such as number of libraries subscribing to sponsored databases, number of database searches, attendance at continuing education events, number of interlibrary loan transactions Evaluation surveys from library training sessions, professional development workshops and other programs supported by LSTA funds Internal databases maintained by Iowa Library Services Impact results from post training evaluations conducted by Iowa Library Services 2010 Iowa census data from the U.S. Census Bureau LSTA State Program Reports for the grant period 2. Following the quantitative analysis, the evaluator gathered qualitative data through interviews with key employees, a telephone focus group with district library consultants and two surveys: LSTA Evaluation Survey (Public Libraries) and LSTA Evaluation Survey (Academic Libraries). Both surveys provided sound samples with 43 representatives of Iowa’s 77 academic libraries and 371 representatives of Iowa’s 544 public libraries participating. Respondents represented libraries of all sizes and geographical areas. Both surveys included multiple choice and rating scale items as well as open-ended questions from which results were coded to identify trends, issues and recommendations.
Resumo:
The use of synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) has emerged recently as an alternative approach for the identification of peptides recognized by T lymphocytes. The choice of both the PS-SCL used for screening experiments and the method used for data analysis are crucial for implementing this approach. With this aim, we tested the recognition of different PS-SCL by a tyrosinase 368-376-specific CTL clone and analyzed the data obtained with a recently developed biometric data analysis based on a model of independent and additive contribution of individual amino acids to peptide antigen recognition. Mixtures defined with amino acids present at the corresponding positions in the native sequence were among the most active for all of the libraries. Somewhat surprisingly, a higher number of native amino acids were identifiable by using amidated COOH-terminal rather than free COOH-terminal PS-SCL. Also, our data clearly indicate that when using PS-SCL longer than optimal, frame shifts occur frequently and should be taken into account. Biometric analysis of the data obtained with the amidated COOH-terminal nonapeptide library allowed the identification of the native ligand as the sequence with the highest score in a public human protein database. However, the adequacy of the PS-SCL data for the identification for the peptide ligand varied depending on the PS-SCL used. Altogether these results provide insight into the potential of PS-SCL for the identification of CTL-defined tumor-derived antigenic sequences and may significantly implement our ability to interpret the results of these analyses.
Resumo:
Quantitative information from magnetic resonance imaging (MRI) may substantiate clinical findings and provide additional insight into the mechanism of clinical interventions in therapeutic stroke trials. The PERFORM study is exploring the efficacy of terutroban versus aspirin for secondary prevention in patients with a history of ischemic stroke. We report on the design of an exploratory longitudinal MRI follow-up study that was performed in a subgroup of the PERFORM trial. An international multi-centre longitudinal follow-up MRI study was designed for different MR systems employing safety and efficacy readouts: new T2 lesions, new DWI lesions, whole brain volume change, hippocampal volume change, changes in tissue microstructure as depicted by mean diffusivity and fractional anisotropy, vessel patency on MR angiography, and the presence of and development of new microbleeds. A total of 1,056 patients (men and women ≥ 55 years) were included. The data analysis included 3D reformation, image registration of different contrasts, tissue segmentation, and automated lesion detection. This large international multi-centre study demonstrates how new MRI readouts can be used to provide key information on the evolution of cerebral tissue lesions and within the macrovasculature after atherothrombotic stroke in a large sample of patients.
Resumo:
After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10¿4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 ¿ A rockfall event generates seismic signals with specific characteristics in the time domain; 2 ¿ the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 ¿ particle motion plot analysis shows that the procedure to locate the rock impact using two stations is feasible; 4 ¿ The feasibility and validity of seismic methods for the detection of rockfall events, their localization and size determination are comfirmed.
Resumo:
The present study proposes a modification in one of the most frequently applied effect size procedures in single-case data analysis the percent of nonoverlapping data. In contrast to other techniques, the calculus and interpretation of this procedure is straightforward and it can be easily complemented by visual inspection of the graphed data. Although the percent of nonoverlapping data has been found to perform reasonably well in N = 1 data, the magnitude of effect estimates it yields can be distorted by trend and autocorrelation. Therefore, the data correction procedure focuses on removing the baseline trend from data prior to estimating the change produced in the behavior due to intervention. A simulation study is carried out in order to compare the original and the modified procedures in several experimental conditions. The results suggest that the new proposal is unaffected by trend and autocorrelation and can be used in case of unstable baselines and sequentially related measurements.
Resumo:
The present study focuses on single-case data analysis and specifically on two procedures for quantifying differences between baseline and treatment measurements The first technique tested is based on generalized least squares regression analysis and is compared to a proposed non-regression technique, which allows obtaining similar information. The comparison is carried out in the context of generated data representing a variety of patterns (i.e., independent measurements, different serial dependence underlying processes, constant or phase-specific autocorrelation and data variability, different types of trend, and slope and level change). The results suggest that the two techniques perform adequately for a wide range of conditions and researchers can use both of them with certain guarantees. The regression-based procedure offers more efficient estimates, whereas the proposed non-regression procedure is more sensitive to intervention effects. Considering current and previous findings, some tentative recommendations are offered to applied researchers in order to help choosing among the plurality of single-case data analysis techniques.
Resumo:
The focus of my PhD research was the concept of modularity. In the last 15 years, modularity has become a classic term in different fields of biology. On the conceptual level, a module is a set of interacting elements that remain mostly independent from the elements outside of the module. I used modular analysis techniques to study gene expression evolution in vertebrates. In particular, I identified ``natural'' modules of gene expression in mouse and human, and I showed that expression of organ-specific and system-specific genes tends to be conserved between such distance vertebrates as mammals and fishes. Also with a modular approach, I studied patterns of developmental constraints on transcriptome evolution. I showed that none of the two commonly accepted models of the evolution of embryonic development (``evo-devo'') are exclusively valid. In particular, I found that the conservation of the sequences of regulatory regions is highest during mid-development of zebrafish, and thus it supports the ``hourglass model''. In contrast, events of gene duplication and new gene introduction are most rare in early development, which supports the ``early conservation model''. In addition to the biological insights on transcriptome evolution, I have also discussed in detail the advantages of modular approaches in large-scale data analysis. Moreover, I re-analyzed several studies (published in high-ranking journals), and showed that their conclusions do not hold out under a detailed analysis. This demonstrates that complex analysis of high-throughput data requires a co-operation between biologists, bioinformaticians, and statisticians.
Resumo:
This research was conducted in the context of the project IRIS 8A Health and Society (2002-2008) and financially supported by the University of Lausanne. It was aomed at developping a model based on the elder people's experience and allowed us to develop a "Portrait evaluation" of fear of falling using their examples and words. It is a very simple evaluation, which can be used by professionals, but by the elder people themselves. The "Portrait evaluation" and the user's guide are on free access, but we would very much approciate to know whether other people or scientists have used it and collect their comments. (contact: Chantal.Piot-Ziegler@unil.ch)The purpose of this study is to create a model grounded in the elderly people's experience allowing the development of an original instrument to evaluate FOF.In a previous study, 58 semi-structured interviews were conducted with community-dwelling elderly people. The qualitative thematic analysis showed that fear of falling was defined through the functional, social and psychological long-term consequences of falls (Piot-Ziegler et al., 2007).In order to reveal patterns in the expression of fear of falling, an original qualitative thematic pattern analysis (QUAlitative Pattern Analysis - QUAPA) is developed and applied on these interviews.The results of this analysis show an internal coherence across the three dimensions (functional, social and psychological). Four different patterns are found, corresponding to four degrees of fear of falling. They are formalized in a fear of falling intensity model.This model leads to a portrait-evaluation for fallers and non-fallers. The evaluation must be confronted to large samples of elderly people, living in different environments. It presents an original alternative to the concept of self-efficacy to evaluate fear of falling in older people.The model of FOF presented in this article is grounded on elderly people's experience. It gives an experiential description of the three dimensions constitutive of FOF and of their evolution as fear increases, and defines an evaluation tool using situations and wordings based on the elderly people's discourse.
Resumo:
Geophysical techniques can help to bridge the inherent gap with regard to spatial resolution and the range of coverage that plagues classical hydrological methods. This has lead to the emergence of the new and rapidly growing field of hydrogeophysics. Given the differing sensitivities of various geophysical techniques to hydrologically relevant parameters and their inherent trade-off between resolution and range the fundamental usefulness of multi-method hydrogeophysical surveys for reducing uncertainties in data analysis and interpretation is widely accepted. A major challenge arising from such endeavors is the quantitative integration of the resulting vast and diverse database in order to obtain a unified model of the probed subsurface region that is internally consistent with all available data. To address this problem, we have developed a strategy towards hydrogeophysical data integration based on Monte-Carlo-type conditional stochastic simulation that we consider to be particularly suitable for local-scale studies characterized by high-resolution and high-quality datasets. Monte-Carlo-based optimization techniques are flexible and versatile, allow for accounting for a wide variety of data and constraints of differing resolution and hardness and thus have the potential of providing, in a geostatistical sense, highly detailed and realistic models of the pertinent target parameter distributions. Compared to more conventional approaches of this kind, our approach provides significant advancements in the way that the larger-scale deterministic information resolved by the hydrogeophysical data can be accounted for, which represents an inherently problematic, and as of yet unresolved, aspect of Monte-Carlo-type conditional simulation techniques. We present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on pertinent synthetic data and then applied to corresponding field data collected at the Boise Hydrogeophysical Research Site near Boise, Idaho, USA.
Resumo:
INTRODUCTION: infants hospitalised in neonatology are inevitably exposed to pain repeatedly. Premature infants are particularly vulnerable, because they are hypersensitive to pain and demonstrate diminished behavioural responses to pain. They are therefore at risk of developing short and long-term complications if pain remains untreated. CONTEXT: compared to acute pain, there is limited evidence in the literature on prolonged pain in infants. However, the prevalence is reported between 20 and 40 %. OBJECTIVE : this single case study aimed to identify the bio-contextual characteristics of neonates who experienced prolonged pain. METHODS : this study was carried out in the neonatal unit of a tertiary referral centre in Western Switzerland. A retrospective data analysis of seven infants' profile, who experienced prolonged pain ,was performed using five different data sources. RESULTS : the mean gestational age of the seven infants was 32weeks. The main diagnosis included prematurity and respiratory distress syndrome. The total observations (N=55) showed that the participants had in average 21.8 (SD 6.9) painful procedures that were estimated to be of moderate to severe intensity each day. Out of the 164 recorded pain scores (2.9 pain assessment/day/infant), 14.6 % confirmed acute pain. Out of those experiencing acute pain, analgesia was given in 16.6 % of them and 79.1 % received no analgesia. CONCLUSION: this study highlighted the difficulty in managing pain in neonates who are exposed to numerous painful procedures. Pain in this population remains underevaluated and as a result undertreated.Results of this study showed that nursing documentation related to pain assessment is not systematic.Regular assessment and documentation of acute and prolonged pain are recommended. This could be achieved with clear guidelines on the Assessment Intervention Reassessment (AIR) cyclewith validated measures adapted to neonates. The adequacy of pain assessment is a pre-requisite for appropriate pain relief in neonates.
Resumo:
Commercially available instruments for road-side data collection take highly limited measurements, require extensive manual input, or are too expensive for widespread use. However, inexpensive computer vision techniques for digital video analysis can be applied to automate the monitoring of driver, vehicle, and pedestrian behaviors. These techniques can measure safety-related variables that cannot be easily measured using existing sensors. The use of these techniques will lead to an improved understanding of the decisions made by drivers at intersections. These automated techniques allow the collection of large amounts of safety-related data in a relatively short amount of time. There is a need to develop an easily deployable system to utilize these new techniques. This project implemented and tested a digital video analysis system for use at intersections. A prototype video recording system was developed for field deployment. A computer interface was implemented and served to simplify and automate the data analysis and the data review process. Driver behavior was measured at urban and rural non-signalized intersections. Recorded digital video was analyzed and used to test the system.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
Because self-reported health status [SRHS] is an ordered response variable, inequality measurement for SRHS data requires a numerical scale for converting individual responses into a summary statistic. The choice of scale is however problematic, since small variations in the numerical scale may reverse the ordering of a given pair of distributions of SRHS data in relation to conventional inequality indices such as the variance. This paper introduces a parametric family of inequality indices, founded on an inequality ordering proposed by Allison and Foster [Allison, R.A., Foster, J., 2004. Measuring health inequalities using qualitative data. Journal of Health Economics 23, 505-524], which satisfy a suitable invariance property with respect to the choice of numerical scale. Several key members of the parametric family are also derived, and an empirical application using data from the Swiss Health Survey illustrates the proposed methodology. [Authors]
Resumo:
We conducted this study to determine the relative influence of various mechanical and patient-related factors on the incidence of dislocation after primary total hip asthroplasty (THA). Of 2,023 THAs, 21 patients who had at least 1 dislocation were compared with a control group of 21 patients without dislocation, matched for age, gender, pathology, and year of surgery. Implant positioning, seniority of the surgeon, American Society of Anesthesiologists (ASA) score, and diminished motor coordination were recorded. Data analysis included univariate and multivariate methods. The dislocation risk was 6.9 times higher if total anteversion was not between 40 degrees and 60 degrees and 10 times higher in patients with high ASA scores. Surgeons should pay attention to total anteversion (cup and stem) of THA. The ASA score should be part of the preoperative assessment of the dislocation risk.
Resumo:
The present paper advocates for the creation of a federated, hybrid database in the cloud, integrating law data from all available public sources in one single open access system - adding, in the process, relevant meta-data to the indexed documents, including the identification of social and semantic entities and the relationships between them, using linked open data techniques and standards such as RDF. Examples of potential benefits and applications of this approach are also provided, including, among others, experiences from of our previous research, in which data integration, graph databases and social and semantic networks analysis were used to identify power relations, litigation dynamics and cross-references patterns both intra and inter-institutionally, covering most of the World international economic courts.