978 resultados para protein glutamine gamma glutamyltransferase
Resumo:
Genes in the TGF9 signaling pathway play important roles in the regulation of ovarian follicle growth and ovulation rate. Mutations in three genes in this pathway, growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and the bone morphogenetic protein receptor B 1 (BMPRB1), influence dizygotic (DZ) twinning rates in sheep. To date, only variants in GDF9 and BMP15, but not their receptors transforming growth factor ss receptor 1 (TGFBR1), bone morphogenetic protein receptor 2 (BMPR2) and BMPR1B, have been investigated with respect to their roles in human DZ twinning. We screened for rare and novel variants in TGFBR1, BMPR2 and BMPR1B in mothers of dizygotic twins (MODZT) from twin-dense families, and assessed association between genotyped and imputed variants and DZ twinning in another large sample of MODZT. Three novel variants were found: a deep intronic variant in BMPR2, and one intronic and one non-synonymous exonic variant in BMPRB1 which would result in the replacement of glutamine by glutamic acid at amino acid position 294 (p.Gln294Glu). None of these variants were predicted to have major impacts on gene function. However, the p.Gln294Glu variant changes the same amino acid as a sheep BMPR1B functional variant and may have functional consequences. Six BMPR1B variants were marginally associated with DZ twinning in the larger case-control sample, but these were no longer significant once multiple testing was taken into account. Our results suggest that variation in the TGF9 signaling pathway type II receptors has limited effects on DZ twinning rates in humans.
Resumo:
The kidney filtration barrier consists of fenestrated endothelial cell layer, glomerular basement membrane and slit diaphragm (SD), the specialized junction between glomerular viscelar epithelial cells (podocytes). Podocyte injury is associated with the development of proteinuria, and if not reversed the injury will lead to permanent deterioration of the glomerular filter. The early events are characterized by disruption of the integrity of the SD, but the molecular pathways involved are not fully understood. Congenital nephrotic syndrome of the Finnish type (CNF) is caused by mutations in NPHS1, the gene encoding the SD protein nephrin. Lack of nephrin results in loss of the SD and massive proteinuria beginning before birth. Furthermore, nephrin expression is decreased in acquired human kidney diseases including diabetic nephropathy. This highlights the importance of nephrin and consequently SD in regulating the kidney filtration function. However, the precise molecular mechanism of how nephrin is involved in the formation of the SD is unknown. This thesis work aimed at clarifying the role of nephrin and its interaction partners in the formation of the SD. The purpose was to identify novel proteins that associate with nephrin in order to define the essential molecular complex required for the establishment of the SD. The aim was also to decipher the role of novel nephrin interacting proteins in podocytes. Nephrin binds to nephrin-like proteins Neph1 and Neph2, and to adherens junction protein P-cadherin. These interactions have been suggested to play a role in the formation of the SD. In this thesis work, we identified densin as a novel interaction partner for nephrin. Densin was localized to the SD and it was shown to bind to adherens junction protein beta-catenin. Furthermore, densin was shown to behave in a similar fashion as adherens junction proteins in cell-cell contacts. These results indicate that densin may play a role in cell adhesion and, therefore, may contribute to the formation of the SD together with nephrin and adherens junction proteins. Nephrin was also shown to bind to Neph3, which has been previously localized to the SD. Neph3 and Neph1 were shown to induce cell adhesion alone, whereas nephrin needed to trans-interact with Neph1 or Neph3 from the opposite cell surface in order to make cell-cell contacts. This was associated with the decreased tyrosine phosphorylation of nephrin. These data extend the current knowledge of the molecular composition of the nephrin protein complex at the SD and also provide novel insights of how the SD may be formed. This thesis work also showed that densin was up-regulated in the podocytes of CNF patients. Neph3 was up-regulated in nephrin deficient mouse kidneys, which share similar podocyte alterations and lack of the SD as observed in CNF patients podocytes. These data suggest that densin and Neph3 may have a role in the formation of morphological alterations in podocytes detected in CNF patients. Furthermore, this thesis work showed that deletion of beta-catenin specifically from adult mouse podocytes protected the mice from the development of adriamycin-induced podocyte injury and proteinuria compared to wild-type mice. These results show that beta-catenin play a role in the adriamycin induced podocyte injury. Podocyte injury is a hallmark in many kidney diseases and the changes observed in the podocytes of CNF patient share characteristics with injured podocytes observed in chronic kidney diseases. Therefore, the results obtained in this thesis work suggest that densin, Neph3 and beta-catenin participate in the molecular pathways which result in morphological alterations commonly detected in injured podocytes in kidney diseases.
Resumo:
Critical cellular decisions such as should the cell proliferate, migrate or differentiate, are regulated by stimulatory signals from the extracellular environment, like growth factors. These signals are transformed to cellular responses through their binding to specific receptors present at the surface of the recipient cell. The epidermal growth factor receptor (EGF-R/ErbB) pathway plays key roles in governing these signals to intracellular events and cell-to-cell communication. The EGF-R forms a signaling network that participates in the specification of cell fate and coordinates cell proliferation. Ligand binding triggers receptor dimerization leading to the recruitment of kinases and adaptor proteins. This step simultaneously initiates multiple signal transduction pathways, which result in activation of transcription factors and other target proteins, leading to cellular alterations. It is known that mutations of EGF-R or in the components of these pathways, such as Ras and Raf, are commonly involved in human cancer. The four best characterized signaling pathways induced by EGF-R are the mitogen-activated protein kinase cascades (MAPKs), the lipid kinase phosphatidylinositol 3 kinase (PI3K), a group of transcription factors called Signal Transducers and Activator of Transcription (STAT), and the phospholipase Cγ; (PLCγ) pathways. The activation of each cascade culminates in kinase translocation to the nucleus to stimulate various transcription factors including activator protein 1 (AP-1). AP-1 family proteins are basic leucine zipper (bZIP) transcription factors that are implicated in the regulation of a variety of cellular processes (proliferation and survival, growth, differentiation, apoptosis, cell migration, transformation). Therefore, the regulation of AP-1 activity is critical for the decision of cell fate and their deregulated expression is widely associated with many types of cancers, such as breast and prostate cancers. The aims of this study were to characterize the roles of EGF-R signaling during normal development and malignant growth in vitro and in vivo using different cell lines and tissue samples. We show here that EGF-R regulates cell proliferation but is also required for regulation of AP-1 target gene expression in fibroblasts in a MAP-kinase mediated manner. Furthermore, EGF-R signaling is essential for enterocyte proliferation and migration during intestinal maturation. EGF-R signaling network, especially PI3-K-Akt pathway mediated AP-1 activity is involved in cellular survival in response to ionizing radiation. Taken together, these results elucidate the connection of EGF-R and AP-1 in various cellular contexts and show their importance in the regulation of cellular behaviour presenting new treatment cues for intestinal perforations and cancer therapy.
Resumo:
The rates of alkaline hydrolysis of methyl &benzoylpropionate (I), methyl y-benzoylbutyrate (11) and methyll6-benzoylvalerate (In) decrease in the order I > I1 > III. Keto participation is the predominant pathway in the case of y-keto esters. Evidence has also been obtained for keto participation in the case of 6-keto esters, whereas no such evidence is available in the case of r-keto esters studied.
Resumo:
A high-affinity riboflavin -binding protein was isolated and characterized for the first time from pregnant-rat sera by affinity chromatography on a lumiflavin-agarose column. The purified protein was homogeneous by the criteria of analytical polyacrylamide-gel disc electrophoresis, gel-filtration chromatography on Sephadex G-100 and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. It had a molecular weight of 90000+/-5000 and interacted with [14C]riboflavin with a 1:1 molar ratio with a dissociation constant (Kd) of 0.42 micron.
Resumo:
The effects of the herbicide, 3-amino-1,2,4-triazole, an inhibitor of heme synthesis in rat liver, have been examined in the mold Neurospora crassa. The drug is a potent inhibitor of the growth of the mold and produces biochemical changes identical to those produced by chloramphenicol. 3-Amino-1,2,4-triazole, like chloramphenicol, is a direct and specific inhibitor of protein synthesis on mitoribosomes. A decrease in the levels of mitochondrial proteins which are completely or partly made on mitoribosomes and an accumulation in the levels of mitochondrial proteins of cytosolic origin have been observed. Both drugs depress porphyrin and heme levels, but there is actually an elevation in the levels of δ-aminolevulinate dehydratase, the rate-limiting enzyme of the heme-biosynthetic pathway in Neurospora crassa. In liver the enzyme is present in non-limiting amounts and the levels are depressed under conditions of 3-amino-1,2,4-triazole treatment. In Neurospora crassa the ‘derepression’ of δ-aminolevulinate dehydratase under conditions of 3-amino-1,2,4-triazole or chloramphenicol treatment is only partial because the drugs inhibit protein synthesis on mitoribosomes. It is concluded that an optimal rate of protein synthesis on mitoribosomes is necessary to maintain an adequate rate of heme synthesis.
Studies of the genetic epidemiology of cardiovascular disease: focus on inflammatory candidate genes
Resumo:
Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.
Resumo:
Skeletal muscle cells are highly specialised in order to accomplish their function. During development, the fusion of hundreds of immature myoblasts creates large syncytial myofibres with a highly ordered cytoplasm filled with packed myofibrils. The assembly and organisation of contractile myofibrils must be tightly controlled. Indeed, the number of proteins involved in sarcomere building is impressive, and the role of many of them has only recently begun to be elucidated. Myotilin was originally identified as a high affinity a-actinin binding protein in yeast twohybrid screen. It was then found to interact also with filamin C, actin, ZASP and FATZ-1. Human myotilin is mainly expressed in striated muscle and induces efficient actin bundling in vitro and in cells. Moreover, mutations in myotilin cause different forms of muscle disease, now collectively known as myotilinopathies. In this thesis, consisting of three publications, the work on the mouse orthologue is presented. First, the cloning and molecular characterisation of the mouse myotilin gene showed that human and mouse myotilin share high sequence homology and a similar expression pattern and gene regulation. Functional analysis of the mouse promoter revealed the myogenic factor-binding elements that are required for myotilin gene transcription. Secondly, expression of myotilin was studied during mouse embryogenesis. Surprisingly, myotilin was expressed in a wide array of tissues at some stages of development; its expression pattern became more restricted at perinatal stages and in adult life. Immunostaining of human embryos confirmed broader myotilin expression compared to the sarcomeric marker titin. Finally, in the third article, targeted deletion of myotilin gene in mice revealed that it is not essential for muscle development and function. These data altogether indicate that the mouse can be used as a model for human myotilinopathy and that loss of myotilin does not alter significantly muscle structure and function. Therefore, disease-associated mutant myotilin may act as a dominant myopathic factor.
Resumo:
Nemaline myopathy (NM) is a rare muscle disorder characterised by muscle weakness and nemaline bodies in striated muscle tissue. Nemaline bodies are derived from sarcomeric Z discs and may be detected by light microscopy. The disease can be divided into six subclasses varying from very severe, in some cases lethal forms to milder forms. NM is usually the consequence of a gene mutation and the mode of inheritance varies between NM subclasses and different families. Mutations in six genes are known to cause NM; nebulin (NEB), alpha-actin, alpha-tropomyosin (TPM3), troponin T1, beta-tropomyosin (TPM2) and cofilin 2, of which nebulin and -actin are the most common. One of the main interests of my research is NEB. Nebulin is a giant muscle protein (600-900 kDa) expressed mainly in the thin filaments of striated muscle. Mutations in NEB are the main cause of autosomal recessive NM. The gene consists of 183 exons. Thus being gigantic, NEB is very challenging to investigate. NEB was screened for mutations using denaturing High Performance Liquid Chromatography (dHPLC) and sequencing. DNA samples from 44 families were included in this study, and we found and published 45 different mutations in them. To date, we have identified 115 mutations in NEB in a total of 96 families. In addition, we determined the occurrence in a world-wide sample cohort of a 2.5 kb deletion containing NEB exon 55 identified in the Ashkenazi Jewish population. In order to find the seventh putative NM gene a genome-wide linkage study was performed in a series of Turkish families. In two of these families, we identified a homozygous mutation disrupting the termination signal of the TPM3 gene, a previously known NM-causing gene. This mutation is likely a founder mutation in the Turkish population. In addition, we described a novel recessively inherited distal myopathy, named distal nebulin myopathy, caused by two different homozygous missense mutations in NEB in six Finnish patients. Both mutations, when combined in compound heterozygous form with a more disruptive mutation, are known to cause NM. This study consisted of molecular genetic mutation analyses, light and electron microscopic studies of muscle biopsies, muscle imaging and clinical examination of patients. In these patients the distribution of muscle weakness was different from NM. Nemaline bodies were not detectable with routine light microscopy, and they were inconspicuous or absent even using electron microscopy. No genetic cause was known to underlie cap myopathy, a congenital myopathy characterised by cap-like structures in the muscle fibres, until we identified a deletion of one codon of the TPM2 gene, in a 30-year-old cap myopathy patient. This mutation does not change the reading frame of the gene, but a deletion of one amino acid does affect the conformation of the protein produced. In summary, this thesis describes a novel distal myopathy caused by mutations in the nebulin gene, several novel nebulin mutations associated with nemaline myopathy, the first molecular genetic cause of cap myopathy, i.e. a mutation in the beta-tropomyosin gene, and a founder mutation in the alpha-tropomyosin gene underlying autosomal recessive nemaline myopathy in the Turkish population.
Resumo:
Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.
Resumo:
Nucleolin is a major nucleolar phosphoprotein involved in various steps of ribosome biogenesis in eukaryotic cells. As nucleolin plays a significant role in ribosomal RNA transcription we were interested in examining in detail the expression of nucleolin across different stages of spermatogenesis and correlate with the transcription status of ribosomal DNA in germ cells.