986 resultados para pressures
Resumo:
This article proposes an experimental procedure to determine the enthalpy (and entropy) of vaporization of organic liquid compounds, by the Smith-Menzies (isoteniscope) method. The values of vapor pressure at different temperatures were obtained and ΔvH (and ΔvS) were graphically determined, using the Clausius-Clapeyron equation. The results for diethyl-ether, propanone, ethanol and n-hexane are in very good agreement with those from literature. A historical and thermodynamic discussion on equations that correlates vapor pressures and temperature precedes the experimental proposition.
Resumo:
In this communication we describe the application of a conductive polymer gas sensor as an air pressure sensor. The device consists of a thin doped poly(4'-hexyloxy-2,5-biphenylene ethylene) (PHBPE) film deposited on an interdigitated metallic electrode. The sensor is cheap, easy to fabricate, lasts for several months, and is suitable for measuring air pressures in the range between 100 and 700 mmHg.
Resumo:
Measurements at high temperature using liquid solutions require special cells and materials which are able to support the temperature and pressure developed inside. The constructed cell was designed to support pressures up to 20 bar, temperatures relatively high up to around 200 ºC, depending on the pressure developed inside the system. It also supports aggressive solutions since its inner wall is made of Teflon. The electrolyte has no contact with the metallic body of the cell. Then, it is supposed that this work represents a great contribution to the electrochemical studies of materials in solutions at high pressure and temperature
Resumo:
This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.
Resumo:
Resulting from ion displacement in a solid under pressure, piezoelectricity is an electrical polarization that can be observed in perovskite-type electronic ceramics, such as PbTiO3, which present cubic and tetragonal symmetries at different pressures. The transition between these crystalline phases is determined theoretically through the bulk modulus from the relationship between material energy and volume. However, the change in the material molecular structure is responsible for the piezoelectric effect. In this study, density functional theory calculations using the Becke 3-Parameter-Lee-Yang-Parr hybrid functional were employed to investigate the structure and properties associated with the transition state of the tetragonal-cubic phase change in PbTiO3 material.
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
A small carbonatite dyke swarm has been identified at Naantali, southwest Finland. Several swarms of shoshonitic lamprophyres are also known along the Archean-Proterozoic boundary in eastern Finland and northwest Russia. These intrusions, along with the carbonatite intrusion at Halpanen, eastern Finland, represent a stage of widespread low-volume mantle-sourced alkaline magmatism in the Svecofennian Domain. Using trace element and isotope geochemistry coupled with precise geochronology from these rocks, a model is presented for the Proterozoic metasomatic evolution of the Fennoscandian subcontinental lithospheric mantle. At ~2.2-2.06 Ga, increased biological production in shallow seas linked to continental rifting, resulted in increased burial rates of organic carbon. Subduction between ~1.93-1.88 Ga returned organic carbon-enriched sediments of mixed Archean and Proterozoic provenance to the mantle. Dehydration reactions supplied water to the mantle wedge, driving arc volcanism, while mica, amphibole and carbonate were brought deeper into the mantle with the subducting slab. The cold subducted slab was heated conductively from the surrounding warm mantle, while pressures continued to gradually increase as a result of crustal thickening. The sediments began to melt in a two stage process, first producing a hydrous alkaline silicate melt, which infiltrated the mantle wedge and crystallised as metasomatic veins. At higher temperatures, carbonatite melt was produced, which preferentially infiltrated the pre-existing metasomatic vein network. At the onset of post-collisional extension, deep fault structures formed, providing conduits for mantle melts to reach the upper crust. Low-volume partial melting of the enriched mantle at depths of at least 110 km led to the formation of first carbonatitic magma and subsequently lamprophyric magma. Carbonatite was emplaced in the upper crust at Naantali at 1795.7 ± 6.8 Ma; lamprophyres along the Archean-Proterozoic boundary were emplaced between 1790.1 ± 3.3 Ma and 1781 ± 20 Ma.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
The aim of this study is to gain a better understanding of the structure and the deformation history of a NW-SE trending regional, crustal-scale shear structure in the Åland archipelago, SW Finland, called the Sottunga-Jurmo shear zone (SJSZ). Approaches involving e.g. structural geology, geochronology, geochemistry and metamorphic petrology were utilised in order to reconstruct the overall deformation history of the study area. The study therefore describes several features of the shear zone including structures, kinematics and lithologies within the study area, the ages of the different deformation phases (ductile to brittle) within the shear zone, as well as some geothermobarometric results. The results indicate that the SJSZ outlines a major crustal discontinuity between the extensively migmatized rocks NE of the shear zone and the unmigmatised, amphibolite facies rocks SW of the zone. The main SJSZ shows overall dextral lateral kinematics with a SW-side up vertical component and deformation partitioning into pure shear and simple shear dominated deformation styles that was intensified toward later stages of the deformation history. The deformation partitioning resulted in complex folding and refolding against the SW margin of the SJSZ, including conical and sheath folds, and in a formation of several minor strike-slip shear zones both parallel and conjugate to the main SJSZ in order to accommodate the regional transpressive stresses. Different deformation phases within the study area were dated by SIMS (zircon U-Pb), ID-TIMS (titanite U-Pb) and 40Ar/39Ar (pseudotachylyte wholerock) methods. The first deformation phase within the ca. 1.88 Ga rocks of the study area is dated at ca. 1.85 Ga, and the shear zone was reactivated twice within the ductile regime (at ca. 1.83 Ga and 1.79 Ga), during which the strain was successively increasingly partitioned into the main SJSZ and the minor shear zones. The age determinations suggest that the orogenic processes within the study area did not occur in a temporal continuum; instead, the metamorphic zircon rims and titanites show distinct, 10-20 Ma long breaks in deformation between phases of active deformation. The results of this study further imply slow cooling of the rocks through 600-700ºC so that at 1.79 Ga, 2 the temperature was still at least 600ºC. The highest recorded metamorphic pressures are 6.4-7.1 kbar. At the late stages or soon after the last ductile phase (ca. 1.79 Ga), relatively high-T mylonites and ultramylonites were formed, witnessing extreme deformation partitioning and high strain rates. After the rocks reached lower amphibolite facies to amphibolite-greenschist facies transitional conditions (ca. 500-550ºC), they cooled rapidly, probably due to crustal uplift and exhumation. The shear zone was reactivated at least once within the semi-brittle to brittle regime between ca. 1.79 Ga and 1.58 Ga, as evidenced by cataclasites and pseudotachylytes. In summary, the results of this study suggest that the Sottunga-Jurmo shear zone (and the South Finland shear zone) defines a major crustal discontinuity, and played a central role in accommodating the regional stresses during and after the Svecofennian orogeny.
Resumo:
The purpose of this dissertation is to examine the dynamics of the socio-technical system in the field of ageing. The study stems from the notion that the ageing of the population as a powerful megatrend has wide societal effects, and is not just a matter for the social and health sector. The central topic in the study is change: not only the age structures and structures of society are changing, but also at the same time there is constant development, for instance, in technologies, infrastructures and cultural perceptions. The changing concept of innovation has widened the understanding of innovations related to ageing from medical and assistive technological innovations to service and social innovations, as well as systemic innovations at different levels, which means the intertwined and co-evolutionary change in technologies, structures, services and thinking models. By the same token, the perceptions of older people and old age are becoming more multi-faceted: old age is no longer equated to illnesses and decline, but visions of active ageing and a third age have emerged, which are framed by choices, opportunities, resources and consumption in later life. The research task in this study is to open up the processes and mechanisms of change in the field of ageing, which are studied as a complex, multi-level and interrelated socio-technical system. The question is about co-effective elements consisting of macro-level landscape changes, the existing socio-technical regime (the rule system, practices and structures) and bottom-up niche-innovations. Societal transitions do not account for the things inside the regime alone, or for the long-term changes in the landscape, nor for the radical innovations, but for the interplay between all these levels. The research problem is studied through five research articles, which offer micro-level case studies to macro-level phenomenon. Each of the articles focus on different aspects related to ageing and change, and utilise various datasets. The framework of this study leans on the studies of socio-technical systems and multi-level perspective on transitions mainly developed by Frank Geels. Essential factors in transition from one socio-technological regime to another are the co-evolutionary processes between landscape changes, regime level and experimental niches. Landscape level changes, like the ageing of the population, destabilise the regime in the forms of coming pressures. This destabilization offers windows for opportunity to niche-innovations outside or at fringe of the regime, which, through their breakthrough, accelerate the transition process. However, the change is not easy because of various kinds of lock-ins and inertia, which tend to maintain the stability of the regime. In this dissertation, a constructionist approach of society is applied leaning mainly to the ideas of Anthony Giddens’ theory of structuration, with the dual nature of structures. The change is taking place in the interplay between actors and structures: structures shape people’s practices, but at the same time these practices constitute and reproduce social systems. Technology and other material aspects, as part of socio-technical systems, and the use of them, also take part in the structuration process. The findings of the study point out that co-evolutionary and co-effective relationships between economic, cultural, technological and institutional fields, as well as relationships between landscape changes, changes in the local and regime-level practices and rule systems, are a very complex and multi-level dynamic socio-technical phenomenon. At the landscape level of ageing, which creates the pressures and triggers to the regime change, there are three remarkable megatrends: demographic change, changes in the global economy and the development of technologies. These exert pressures to the socio-technical regime, which as a rule system is experiencing changes in the form of new markets and consumer habits, new ways of perceiving ageing, new models of organising the health care and other services and as new ways of considering innovation and innovativeness. There are also inner dynamics in the relationships between these aspects within the regime. These are interrelated and coconstructed: the prevailing perceptions of ageing and innovation, for instance, reflect the ageing policies, innovation policies, societal structures, organising models, technology and scientific discussion, and vice versa. Technology is part of the inner dynamics of the sociotechnological regime. Physical properties of the artefacts set limitations and opportunities with regard to their functions and uses. The use of and discussion about technology, contributes producing and reproducing the perceptions of old age. For societal transition, micro-level changes are also needed, in form of niche-innovations, for instance new services, organisational models or new technologies, Regimes, as stabilitystriven systems, tend to generate incremental innovations, but radically new innovations are generated in experimental niches protected from ‘normal’ market selection. The windows of opportunity for radical novelties may be opened if the circumstances are favourable for instance by tensions in the socio-technical regime affected by landscape level changes. This dissertation indicates that a change is taking place, firstly, in the dynamic interactionbetween levels, as a result of purposive action and governance to some extent. Breaking the inertia and using the window of opportunity for change and innovation offered by dynamics between levels, presupposes the actors’ special capabilities and actions such as dynamic capabilities and distance management. Secondly, the change is taking place the socio-technological negotiations inside the regime: interaction between technological and social, which is embodied in the use of technology. The use of technology includes small-level contextual scripts that also participate in forming broader societal scripts (for instance defining old age at the society level), which in their turn affect the formation of policies for innovation and ageing. Thirdly, the change is taking place by the means of active formation of the multi-actor innovation networks, where the role of distance management is crucial to facilitate the communication between actors coming from different backgrounds as well as to help the niches born outside the regime to utilise the window of opportunity offered by regime destabilisation. This dissertation has both theoretical and practical contributions. This study participates in the discussion of action-oriented view on transition by opening up of the socio-technological, coevolutionary processes of the multi-faceted phenomenon of ageing, which has lacked systematic analyses. The focus of this study, however, is not on the large-scale coordination and governance, but rather on opening up the incremental elements and structuration processes, which contribute to the transition little by little, and which can be affected to. This increases the practical importance of this dissertation, by highlighting the importance of very tiny, everyday elements in the change processes in the long run.
Resumo:
Työssä tutkittiin lämpötilan vaikutusta kalvon likaantumiseen mustalipeällä ja puuperäisellä hydrolysaatilla lämpötiloissa 20, 45 ja 70 °C:tta. Työn tavoitteena oli löytää lämpötila, jossa tutkimuksessa käytetyt puuperäiset liuokset likasivat kalvoja mahdollisimman vähän. Tutkimuksessa käytettiin Alfa Lavalin UFX5-ultrasuodatuskalvoa sekä Microdyn-Nadirin ultrasuodatuskalvoa UP010 ja nanosuodatuskalvoa NP010. Ennen puuperäisten liuosten adsorboimista kalvoihin säilöntäaineet poistettiin kalvoista sekä kalvojen toiminta stabiloitiin esikäsittelemällä kalvot. Esikäsittelyssä kalvoja pestiin alkalisella pesuaineella, puristettiin 8 bar:n paineessa sekä huuhdeltiin vedellä ja etikkahapolla. Esikäsitellyt kalvot karakterisoitiin mittaamalla malliaineliuoksen vuo ja malliaineiden retentiot suodattamalla polyetyleeniglykoliliuosta kolmikennosuodattimella paineissa 2, 4 ja 6 bar. Tämän jälkeen kalvot altistettiin lämpötiloissa 20, 45 ja 70 °C:tta mustalipeälle ja hydrolysaatille. Altistuksen jälkeen karakterisointi tehtiin uudelleen, jotta vuoarvoja ja retentioita vertaamalla voitiin arvioida altistuksen aikana tapahtunutta kalvojen likaantumista. Adsorboituneen lian puhdistusta kalvoista tutkittiin pesemällä kalvoja alkalisella pesuliuoksella 20 °C:ssa tehdyn altistuksen jälkeen. Mustalipeälle altistettujen kalvojen likaantuminen oli vähäisintä kokeissa, joissa lämpötila oli 20 °C. Alfa Lavalin UFX5-kalvolla 70 °C:ssa tehdyssä kokeessa kalvon likaantuminen oli myös erittäin vähäistä, sillä permeabiliteetti pieneni mustalipeäaltistuksen seurauksena alle 5 %. Hydrolysaatille altistetut kalvot likaantuivat adsorptiolla vähiten Alfa Laval UFX5-kalvoilla 20 °C:ssa tehdyissä kokeissa ja 45 °C:ssa Microdyn-Nadir NP010-kalvoilla tehdyissä kokeissa. Kokeiden perusteella tutkituista vaihtoehdoista korkein tutkimuksessa käytetty lämpötila 70 °C ja Alfa Lavalin UFX5-kalvo soveltuvatkin parhaiten mustalipeän kalvosuodatukseen adsorptiivisen likaantumisen kannalta.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
Työssä selvitettiin Neste Oil Porvoon jalostamon tuotantolinja 2 jäähdytysvesiverkon tilaa. Jäähdytysvesiverkon hydraulinen malli päivitettiin ja verifioitiin painemittauksin. Mallia tarkennettiin säätöventtiilien mallinnuksen sekä virhelähteiden tarkastelun perusteella havaituin muutoksin. Mallin verifioinnissa havaittiin huomattavia eroja mallin ja mitattujen paineiden välillä. Tämä johti mallin tarkempaan tarkasteluun, sekä virhelähteiden ja niiden vaikutusten selvittämiseen. Putkivarusteiden mallinnusmenetelmiä, sekä mallinnusperiaatteita vertailtiin keskenään. Koska jäähdytysveden kokonaiskierto oli riittämätön, tarkasteltiin kolmea vaihtoehtoa riittävän kiertovesimäärän aikaansaamiseksi. Nykyisten kiertovesipumppujen rinnanoperointi, sekä riittävän suureksi skaalatun pumpun käyttö simuloitiin. Kolmantena tapauksena arvioitiin lämmönvaihdinkohtaisen kuristussuunnitelman vaikutus putkiston painehäviöön, sekä putkistolle sopiva kiertovesipumppu. Vaihtoehdoille laskettiin suuntaa-antavat investointi- ja käyttökustannukset. Tarkastelun perusteella riittävän suureksi skaalattu pumppu todettiin kannattavimmaksi pienen hintaeron, sekä luotettavamman jäähdytysvesikierron käyttövarmuuden vuoksi. Työssä onnistuttiin tuottamaan yleispätevää tietoa suljetun jäähdytysvesiverkon hydrauliseen mallinnukseen vaikuttavista tekijöistä, sekä niiden vaikutuksesta mallin tarkkuuteen. Selvityksen perusteella tarkasteltua mallia saatiin tarkemmaksi.
Resumo:
Sellutehtaiden kannattavuutta pyritään lisäämään parantamalla tehtaiden energiatehokkuutta ja tehostamalla tuotantoa. Yksi keino tehtaan sähkön tuotannon lisäämiseksi on höyrytasojen paineiden alentaminen tehtaan tuotantoprosesseissa. Tällöin höyry voidaan paisuttaa turbiinissa matalampaan paineeseen. Höyryn painetasojen alentaminen kuitenkin lisää tehtaan investointikustannuksia siirtoputkistojen kokojen ja lämmönsiirtopinta-alojen kasvaessa. Tämä diplomityö on tehty Lappeenrannan teknillisessä yliopistossa osana Suomen Soodakattilayhdistyksen projektia ”Skyrec – Soodakattilan sähköenergiatehokkuuden nostaminen uudelle tasolle”. Tässä diplomityössä määritetään 600 000 tonnia sellua vuodessa tuottaville Suomeen sopiville sellutehdastyypeille taloudellisesti optimaaliset höyryn painetasot. Optimaaliset höyryn painetasot määritettiin painetasojen mukaisten energiataseiden sekä investointiarvioiden perusteella. Työn taselaskennat tehtiin Lappeenrannan teknillisen yliopiston Millflow-laskentasovelluksella. Matalapainetason mukaisia investointikustannuksia arvioitiin tehtaiden putkiston, haihduttamon ja kuivauskoneen osalta. Tulosten mukaan höyrytasojen paineet on taloudellisesti kannattavaa valita tehtaan laitteiston ja prosessien mukaan alhaisimmiksi mahdollisiksi. Lisäksi työssä tarkastellaan välipainehöyryn ja nuohoushöyryn paineiden alentamisen vaikutuksia tehtaan sähkön tuotantoon sekä joillekkin tehtaan prosesseille rakennettavan oman matala- tai välipainelinjan käytön kannattavuutta. Diplomityöhön kerättiin tietoa suomalaisilla sellutehtailla käytössä olevista höyryn paineista sekä syistä painetasojen valintaan.
Resumo:
ABSTRACT The climate change, the quest for sustainability and the strong environmental pressures for alternatives to traditional fossil fuels have increased the interest in the search and use of renewable energy sources. Among them stands out the biomass of charcoal coming from renewable forests, widely used as a thermal reductant in the steel industry in the detriment of the use of mineral coal coke. This study aimed to compare different operating procedures of immediate chemical analysis of charcoal. Seven essays to immediate chemical analysis were compared, spread between procedures performed by Brazilian companies and laboratories, the test described by NBR 8112 and one realized with a thermogravimetric analyzer (TGA) using the parameters of the NBR 8112. There were significant differences in the volatiles matter content and consequently in the fixed carbon contents found. The differences between the procedures and the NBR 8112 were caused by an excess burning time, a mass sample above or below the standard or inappropriate container used for burning. It observed that the TGA appraisal of the volatiles content must be carried out with a burning time equal to 2 minutes to obtain results similar to those of the NBR 8112 norm. Moreover, the ash content values were statistically identical and the particles size did not influence the differences between means.