975 resultados para potentials


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Some controversy remains about the potential applicability of cognitive potentials for evaluating the cerebral activity associated with cognitive capacity. A fundamental requirement is that these neurophysiological parameters show a high level of stability over time. Previous studies have shown that the reliability of diverse parameters of the P3 component (latency and amplitude) ranges between moderate and high. However, few studies have paid attention to the retest reliability of the P3 topography in groups or individuals. Considering that changes in P3 topography have been related to different pathologies and healthy aging, the main objective of this article was to evaluate in a longitudinal study (two sessions) the reliability of P3 topography in a group and at the individual level. RESULTS The correlation between sessions for P3 topography in the grand average of groups was high (r = 0.977, p<0.001). The within-subject correlation values ranged from 0.626 to 0.981 (mean: 0.888). In the between-subjects topography comparisons, the correlation was always lower for comparisons between different subjects than for within-subjects correlations in the first session but not in the second session. CONCLUSIONS The present study shows that P3 topography is highly reliable for group analysis (comprising the same subjects) in different sessions. The results also confirmed that retest reliability for individual P3 maps is suitable for follow-up studies for a particular subject. Moreover, P3 topography appears to be a specific marker considering that the between-subjects correlations were lower than the within-subject correlations. However, P3 topography appears more similar between subjects in the second session, demonstrating that is modulated by experience. Possible clinical applications of all these results are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurons projecting transitorily into the corpus callosum from area 17 of the cat were retrogradely labeled by the fluorescent tracer Fast Blue (FB) injected into contralateral areas 17 and 18 on postnatal days 1-5. During the second postnatal month these neurons were still labeled by the early injection, although they had eliminated their callosal axon. At this time, 15-20% of these neurons could be retrogradely relabeled by injections of Diamidino Yellow (DY) into ipsilateral areas 17 and 18, but few or none by similar injections in the other areas that receive from area 17 (19, 21a, PMLS, 20a, 20b, DLS). Similarly, area 17 neurons projecting transitorily to contralateral area PMLS during the first postnatal week could be relabeled by DY injections in ipsilateral areas 17 and 18 but not in PMLS. Already around birth, many transitorily callosal neurons in area 17 send bifurcating axons both to contralateral areas 17 and 18 and ipsilateral area 18. It is probable that during postnatal development some of these neurons selectively eliminate their callosal axon collaterals and maintain the projection to ipsilateral area 18. In fact, some transitorily callosal neurons in area 17 can be double-labeled by simultaneous perinatal injections of FB in contralateral areas 17 and 18 and of a new long-lasting retrograde tracer, rhodamine-conjugated latex microspheres, in ipsilateral area 18. The same neurons can then be relabeled by reinjecting ipsilateral area 18 with DY during the second postnatal month. This finding, however, does not exclude the possibility that some transitorily callosal neurons send an axon to ipsilateral area 18 after eliminating their callosal axon. In conclusion, area 17 neurons that project transitorily through the corpus callosum later participate, probably permanently, in ipsilateral corticocortical projections but selectively to areas 17-18. The mechanism responsible for this selectivity is unknown, but it may be related to the differential radial distribution (i.e., to birth date) of area 17 neurons engaged in the various corticocortical projections. The problems raised by the use of long-lasting retrograde fluorescent tracers in neurodevelopmental studies and by the quantification of results of double- and triple-labeling paradigms are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of root systems in drought tolerance is a subject of very limited information compared with above-ground responses. Adjustments to the ability of roots to supply water relative to shoot transpiration demand is proposed as a major means for woody perennial plants to tolerate drought, and is often expressed as changes in the ratios of leaf to root area (AL:AR). Seasonal root proliferation in a directed manner could increase the water supply function of roots independent of total root area (AR) and represents a mechanism whereby water supply to demand could be increased. To address this issue, seasonal root proliferation, stomatal conductance (gs) and whole root system hydraulic conductance (kr) were investigated for a drought-tolerant grape root system (Vitis berlandieri×V. rupestris cv. 1103P) and a non-drought-tolerant root system (Vitis riparia×V. rupestris cv. 101-14Mgt), upon which had been grafted the same drought-sensitive clone of Vitis vinifera cv. Merlot. Leaf water potentials (ψL) for Merlot grafted onto the 1103P root system (–0.91±0.02 MPa) were +0.15 MPa higher than Merlot on 101-14Mgt (–1.06±0.03 MPa) during spring, but dropped by approximately –0.4 MPa from spring to autumn, and were significantly lower by –0.15 MPa (–1.43±0.02 MPa) than for Merlot on 101-14Mgt (at –1.28±0.02 MPa). Surprisingly, gs of Merlot on the drought-tolerant root system (1103P) was less down-regulated and canopies maintained evaporative fluxes ranging from 35–20 mmol vine−1 s−1 during the diurnal peak from spring to autumn, respectively, three times greater than those measured for Merlot on the drought-sensitive rootstock 101-14Mgt. The drought-tolerant root system grew more roots at depth during the warm summer dry period, and the whole root system conductance (kr) increased from 0.004 to 0.009 kg MPa−1 s−1 during that same time period. The changes in kr could not be explained by xylem anatomy or conductivity changes of individual root segments. Thus, the manner in which drought tolerance was conveyed to the drought-sensitive clone appeared to arise from deep root proliferation during the hottest and driest part of the season, rather than through changes in xylem structure, xylem density or stomatal regulation. This information can be useful to growers on a site-specific basis in selecting rootstocks for grape clonal material (scions) grafted to them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'objectiu d'aquest estudi és definir els patrons d’hipoacúsia en dones amb Síndrome de Turner i els possibles factors que poden afavorir el desenvolupament d’hipoacúsia neurosensorial en dones adultes amb Síndrome de Turner. Es va trobar que més de la meitat de les dones amb Sindrome de Turner presenten hipoacúsia a l’audiometria, confirmat pels potencials evocats auditius de tronc; la hipoacúsia neurosensorial és el tipus de pèrdua d'audició més freqüent entre dones de mitjana edat amb síndrome de Turner i l'edat, el cariotip i la història prèvia d'otitis mitja recurrent són possibles factors de risc per l’aparició d’hipoacúsia en aquestes pacients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The repeated presentation of simple objects as well as biologically salient objects can cause the adaptation of behavioral and neural responses during the visual categorization of these objects. Mechanisms of response adaptation during repeated food viewing are of particular interest for better understanding food intake beyond energetic needs. Here, we measured visual evoked potentials (VEPs) and conducted neural source estimations to initial and repeated presentations of high-energy and low-energy foods as well as non-food images. The results of our study show that the behavioral and neural responses to food and food-related objects are not uniformly affected by repetition. While the repetition of images displaying low-energy foods and non-food modulated VEPs as well as their underlying neural sources and increased behavioral categorization accuracy, the responses to high-energy images remained largely invariant between initial and repeated encounters. Brain mechanisms when viewing images of high-energy foods thus appear less susceptible to repetition effects than responses to low-energy and non-food images. This finding is likely related to the superior reward value of high-energy foods and might be one reason why in particular high-energetic foods are indulged although potentially leading to detrimental health consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Postanoxic status epilepticus (PSE) is considered a predictor of fatal outcome and therefore not intensively treated; however, some patients have had favorable outcomes. The aim of this study was to identify favorable predictors for awakening beyond vegetative state in PSE. METHODS: We studied six subjects treated with hypothermia improving beyond vegetative state after cerebral anoxia, despite PSE. They were among a cohort of patients treated for anoxic encephalopathy with therapeutic hypothermia in our institution between October 1999 and May 2006 (retrospectively, 3/107 patients) and June 2006 and May 2008 (prospectively, 3/74 patients). PSE was defined by clinical and EEG criteria. Outcome was assessed according to the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). RESULTS: All improving patients had preserved brainstem reflexes, cortical somatosensory evoked potentials, and reactive EEG background during PSE. Half of them had myoclonic PSE, while three had nonconvulsive PSE. In the prospective arm, 3/28 patients with PSE showed this clinical-electrophysiologic profile; all awoke. Treatments consisted of benzodiazepines, various antiepileptic drugs, and propofol. One subject died of pneumonia in a minimally conscious state, one patient returned to baseline (CPC1), three had moderate impairment (CPC2), and one remained dependent (CPC3). Patients with nonconvulsive PSE showed a better prognosis than subjects with myoclonic PSE (p = 0.042). CONCLUSION: Patients with postanoxic status epilepticus and preserved brainstem reactions, somatosensory evoked potentials, and EEG reactivity may have a favorable outcome if their condition is treated as status epilepticus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Axons, and particularly regenerating axons, have high metabolic needs in order to maintain critical functions such as axon transport and membrane depolarization. Though some of the required energy likely comes form extracellular glucose and ATP generated in the soma, we and others hypothesize that some of the energy may be supplied by lactate. Unlike glucose that requires glycolytic enzymes to produce pyruvate, lactate can be converted directly to pyruvate by lactate dehydrogenase and transported into mitochondria for oxidative metabolism. In order to be transported into or out of cells, lactate requires specific monocarboxylate transporters (MCTs), the most abundant of which is MCT1. If MCT1 and lactate are critical for nerve function and regeneration, we hypothesize that MCT1 heterozygote null mice, which appear phenotypically normal despite having approximately 40% MCT1 as compared to wildtype littermate mice, would have reduced capacity for repair following nerve injury. To investigate this, adult MCT1 heterozygote null mice or wild-type mice underwent unilateral sciatic nerve crush in the proximal thigh. We found that regeneration of the sciatic nerve, as measured by recovery of compound muscle action potentials (CMAP) in the lateral plantar muscles following proximal sciatic nerve stimulation, was delayed from a median of 21 days in wildtype mice to 38.5 days in MCT1 heterozygote mice. In fact, half of the MCT1 heterozygote null mice had no recovery of CMAP by the endpoint of the study at 42 days, while all of the wild-type mice had recovered. In addition, the maximal amplitude of CMAP recovery in MCT1 heterozygote mull mice was reduced from a mean of 3 mV to 0.5 mV. As would be expected, the denervated gastrocnemius muscle of MCT1 heterozygote null mice remained atrophic at 42 days compared to wild-type mice. Our experiments show that lactate supplied through MCT1 is necessary for nerve regeneration. Experiments are underway to determine whether loss of MCT1 prevents nerve regrowth directly due to reduced energy supply to axons or indirectly by dysfunctional Schwann cells normally dependent on lactate supply through MCT1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2 g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we report on the electronic and vibrational (hyper)polarizabilities of donor–acceptorsubstituted azobenzene. It is observed that both electronic and vibrational contributions to the electricdipole first hyperpolarizability of investigated photoactive molecule substantially depend on the conformation. The contributions to the nuclear relaxation first hyperpolarizability are found to be quite important in the case of two considered isomers (cis and trans). Although the double-harmonic term is found to be the largest in terms of magnitude, it is shown that the total value of the nuclear relaxation contribution to vibrational first hyperpolarizability is a result of subtle interplay of higher-order contributions. As a part of the study, we also assess the performance of long-range-corrected densityfunctional theory in determining vibrational contributions to electric dipole (hyper)polarizabilities. In most cases, the applied long-range-corrected exchange correlation potentials amend the drawbacks of their conventional counterparts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leaves of all plants use elaborate and inducible defence systems to protect themselves. A wide variety of such defences are known and they include defence chemicals such as alkaloids, phenolics and terpenes, physical structures ranging from fibre cells to silica deposits, and a wide variety of defence proteins many of which target digestive processes in herbivores. It has long been known that the defence responses of plants under attack by insects are not restricted to the site of attack. Instead, if a leaf is damaged, defence can be triggered in other parts of the plant body, for example in distal leaves or even in roots and flowers. This raises the question of what are the organ-to-organ signals that coordinate this process. Several hypotheses have been proposed. These include the long-distance transfer of chemical signals through the plant vasculature, hydraulic signals that may transit through the xylem, and electrical signals that would move through living tissues such as the phloem. Much evidence for each of these scenarios has been published. In this thesis we took advantage of the fact that many plant defence responses are regulated by a signal transduction pathway based on a molecule called jasmonic acid. We used this molecule, one of its derivatives (jasmonoyl-isoleucine), and some of the genes it regulates as markers. Using these we investigated the possible role of the electrical signals in the leaf- to-leaf activation of the jasmonate pathway. We found that feeding insects stimulate easily detected electrical activity in the leaves of Arabidopsis thaliana and we used non-invasive surface electrodes to record this activity. This approach showed that jasmonate pathway activity and the electrical activity provoked by mechanical wounding occurred within identical spatial boundaries. Measurements of the apparent speed of surface potentials agreed well with previous velocity estimates for the speed of leaf-to-leaf signals that activate the jasmonate pathway. Using this knowledge we were able to investigate the effects of current injection into Arabidopsis leaves. This resulted in the strong expression of many jasmonate-regulated genes. All these results showed that electrical activity and the activation of jasmonate signalling were highly correlated. In order to test for possible causal links between the two processes, we conducted a small-scale reverse genetic screen on a series of T-DNA insertion mutants in ion channel genes and in other genes encoding proteins such as proton pumps. This screen, which was based on surface potential measurements, revealed that mutations in genes related to ionotropic glutamate receptors in animals had impaired electrical activity after wounding. Combining mutation of two of these glutamate-receptor-like genes in a double mutant reduced the response of leaves to current injection. When a leaf of this double mutant was wounded it failed to transmit a long-distance signal to a distal leaf. This result distinguished the double mutant from the wild-type plant and provides the first genetic evidence that electrical signalling is necessary to coordinate defence responses between organs in plants. - Les feuilles des plantes disposent de systèmes de défense inductibles très élaborés. Un grand nombre de ces systèmes de défenses sont connus et sont basés sur des composés chimiques comme les alcaloïdes, les composés phénoliques ou les terpènes, des systèmes physiques allant de la production de cellules fibreuses aux cristaux de silice ainsi qu'un grand nombre de protéines de défense ciblant le processus digestif des herbivores. Il est connu dépuis longtemps que la réponse défensive de la plante face à l'attaque pas un insecte n'est pas seulement localisée au niveau de la zone d'attaque. A la place, si une feuille est attaquée, les systèmes de défense peuvent être activés ailleurs dans la plante, comme par exemple dans d'autres feuilles, les racines ou même les fleurs. Ces observations soulèvent la question de la nature des signaux d'organes à organes qui régulent ces systèmes. Plusieurs hypothèses ont été formulées; une ou plusieures molécules pourraient être véhiculées dans la plante grâce au système vasculaire, un signal hydraulique transmis au travers du xylème ou encore des signaux électriques transmis par les cellules comme dans le phloème par exemple. De nombreuses études ont été publiées sur ces différentes hypothèses. Dans ce travail de thèse, nous avons choisi d'utiliser à notre avantage le fait que de nombreuses réponses de défense de la plante sont régulées par une même voie de signalisation utilisant l'acide jasmonique. Nous avons utilisé comme marqueurs cette molécule, un de ses dérivés (le jasmonoyl-isoleucine) ainsi que certains des gènes que l'acide jasmonique régule. Nous avons alors testé l'implication de la transmission de signaux électriques dans l'activation de la voie du jasmonate de feuille à feuille. Nous avons découvert que les insectes qui se nourrissent de feuilles d'Arabidopsis thaliana activent un signal électrique que nous avons pu mesurer grâce à une technique non invasive d'électrodes de surface. Les enregistrements ont montré que la génération de signaux électriques et l'activation de la voie du jasmonate avaient lieu aux mêmes endroits. La mesure de la vitesse de déplacement des impulsions électriques correspond aux estimations faites concernant l'activation de la voie du jasmonate. Grâce à cela, nous avons pu tester l'effet d'injection de courant électrique dans les feuilles d'Arabidopsis. La conséquence a été une forte expression de nombreux gènes de la voie du jasmonate, suggérant une forte corrélation entre l'activité électrique et l'activation de la voie du jasmonate. Afin de tester le lien de cause entre ces deux phénomènes, nous avons entrepris un criblage génétique sur une série de mutants d'insertion à l'ADN-T dans des gènes de canaux ioniques et d'autres gènes d'intérêt comme les gènes des pompes à protons. Ce criblage, basé sur la mesure de potentiels de surface, a permis de montrer que plusieurs mutations de gènes liés aux récepteurs au glutamate ionotropique présentent une baisse drastique de leurs activités électriques après une blessure mécanique des feuilles par rapport au type sauvage. Par la combinaison de deux mutations de ces récepteurs au glutamate en un double mutant, on obtient une réponse à la stimulation électrique encore plus faible. Quand une feuille du double mutant est blessée, elle est incapable de transmettre un signal à longue distance vers une feuille éloignée. Ce résultat permet de distinguer le double mutant de la plante sauvage et amène la première preuve génétique que l'activité électrique est nécessaire pour coordonner les réponses de défense entre les organes chez les plantes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS: Brugada syndrome (BrS) is characterized by arrhythmias leading to sudden cardiac death. BrS is caused, in part, by mutations in the SCN5A gene, which encodes the sodium channel alpha-subunit Na(v)1.5. Here, we aimed to characterize the biophysical properties and consequences of a novel BrS SCN5A mutation. METHODS AND RESULTS: SCN5A was screened for mutations in a male patient with type-1 BrS pattern ECG. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in HEK293 cells. Sodium currents (I(Na)) were analysed using the whole-cell patch-clamp technique at 37 degrees C. The electrophysiological effects of the mutation were simulated using the Luo-Rudy model, into which the transient outward current (I(to)) was incorporated. A new mutation (C1850S) was identified in the Na(v)1.5 C-terminal domain. In HEK293 cells, mutant I(Na) density was decreased by 62% at -20 mV. Inactivation of mutant I(Na) was accelerated in a voltage-dependent manner and the steady-state inactivation curve was shifted by 11.6 mV towards negative potentials. No change was observed regarding activation characteristics. Altogether, these biophysical alterations decreased the availability of I(Na). In the simulations, the I(to) density necessary to precipitate repolarization differed minimally between the two genotypes. In contrast, the mutation greatly affected conduction across a structural heterogeneity and precipitated conduction block. CONCLUSION: Our data confirm that mutations of the C-terminal domain of Na(v)1.5 alter the inactivation of the channel and support the notion that conduction alterations may play a significant role in the pathogenesis of BrS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In silico screening has become a valuable tool in drug design, but some drug targets represent real challenges for docking algorithms. This is especially true for metalloproteins, whose interactions with ligands are difficult to parametrize. Our docking algorithm, EADock, is based on the CHARMM force field, which assures a physically sound scoring function and a good transferability to a wide range of systems, but also exhibits difficulties in case of some metalloproteins. Here, we consider the therapeutically important case of heme proteins featuring an iron core at the active site. Using a standard docking protocol, where the iron-ligand interaction is underestimated, we obtained a success rate of 28% for a test set of 50 heme-containing complexes with iron-ligand contact. By introducing Morse-like metal binding potentials (MMBP), which are fitted to reproduce density functional theory calculations, we are able to increase the success rate to 62%. The remaining failures are mainly due to specific ligand-water interactions in the X-ray structures. Testing of the MMBP on a second data set of non iron binders (14 cases) demonstrates that they do not introduce a spurious bias towards metal binding, which suggests that they may reliably be used also for cross-docking studies.