979 resultados para planetary rover
Resumo:
Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg, and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to similar to 300 km s(-1) using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen-enriched intrinsic slow rotators (nu sin i less than or similar to 50 km s(-1)) incompatible with our models (similar to 20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (dex) fast rotators (log g < 3.7 dex) that are relatively unenriched (a further similar to 20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen-burning main sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields is required to understand the surface properties of a population of massive main- sequence stars.
Resumo:
Understanding climate change and its potential impact on species, populations and communities is one of the most pressing questions of twenty-fi rst-century conservation planning. Palaeobiogeographers working on Cenozoic fossil records and other lines of evidence are producing important insights into the dynamic nature of climate and the equally dynamic response of species, populations and communities. Climatic variations ranging in length from multimillennia to decades run throughout the palaeo-records of the Quaternary and earlier Cenozoic and have been shown to have had impacts ranging from changes in the genetic structure and morphology of individual species, population sizes and distributions, community composition to large-scale bio-diversity gradients. The biogeographical impacts of climate change may be due directly to the effects of alterations in temperature and moisture on species, or they may arise due to changes in factors such as disturbance regimes. Much of the recent progress in the application of palaeobiogegraphy to issues of climate change and its impacts can be attributed to developments along a number of still advancing methodological frontiers. These include increasingly finely resolved chronological resolution, more refi ned atmosphere-biosphere modelling, new biological and chemical techniques in reconstructing past species distributions and past climates, the development of large and readily accessible geo-referenced databases of biogeographical and climatic information, and new approaches in fossil morphological analysis and new molecular DNA techniques.
Resumo:
We observed a stellar occultation by Titan on 2003 November 14 from La Palma Observatory using ULTRACAM with three Sloan filters: u, g, and i (358, 487, and 758 nm, respectively). The occultation probed latitudes 2°?S and 1°?N during immersion and emersion, respectively. A prominent central flash was present in only the i filter, indicating wavelength-dependent atmospheric extinction. We inverted the light curves to obtain six lower-limit temperature profiles between 335 and 485 km (0.04 and 0.003 mb) altitude. The i profiles agreed with the temperature measured by the Huygens Atmospheric Structure Instrument [Fulchignoni, M., and 43 colleagues, 2005. Nature 438, 785 791] above 415 km (0.01 mb). The profiles obtained from different wavelength filters systematically diverge as altitude decreases, which implies significant extinction in the light curves. Applying an extinction model [Elliot, J.L., Young, L.A., 1992. Astron. J. 103, 991 1015] gave the altitudes of line of sight optical depth equal to unity: 396±7 and 401±20 km (u immersion and emersion); 354±7 and 387±7 km (g immersion and emersion); and 336±5 and 318±4 km (i immersion and emersion). Further analysis showed that the optical depth follows a power law in wavelength with index 1.3±0.2. We present a new method for determining temperature from scintillation spikes in the occulting body's atmosphere. Temperatures derived with this method are equal to or warmer than those measured by the Huygens Atmospheric Structure Instrument. Using the highly structured, three-peaked central flash, we confirmed the shape of Titan's middle atmosphere using a model originally derived for a previous Titan occultation [Hubbard, W.B., and 45 colleagues, 1993. Astron. Astrophys. 269, 541 563].
Resumo:
We present results from broad-band V- and R-filter observations obtained at the 4.2-m William Herschel Telescope on La Palma on 2002 July 12-14. A total of six comets were imaged, and their heliocentric distances ranged from 2.8 to 6.1 au. The comets observed were 43P/Wolf-Harrington, 129P/Shoemaker-Levy 3, 133P/Elst-Pizarro, 143P/Kowal-Mrkos, P/1998 U4 (Spahr) and P/2001 H5 (NEAT). A detailed surface brightness profile analysis indicates that three of the targeted comets (43P/Wolf-Harrington, 129P/Shoemaker-Levy 3 and P/1998 U4) were visibly active, and the remaining three comets were stellar in appearance. Further analysis shows that for the three `stellar-like' comets the possible coma contribution to the observed flux does not exceed 12.2 per cent, and in the case of comet 143P/Kowal-Mrkos the coma contribution is expected to be as low as 1 per cent, and so the resulting photometry most likely represents that of the projected nucleus surface. Effective radii for the inactive comets range from 1.02 to 4.56 km, and the effective radius upper limits for the active comets range from 1.94 to 4.15 km. We assume an albedo and phase coefficient of 0.04 and 0.035 mag deg-1, respectively, with the exception of comets 133P/Elst-Pizarro and 143P/Kowal-Mrkos for which phase coefficients were previously measured. These values are compared with previous measurements, and for comet 43P/Wolf-Harrington we find that the nucleus axial ratio a/b could be as large as 2.44. For the active comets we measured dust production levels in terms of the Af? quantity. Spectral gradients were extracted for two of the inactive comets from their measured broad-band colour indices, and compared with the rest of the comet population for which (V-R) colour and spectral gradient values exist. We find a spectral gradient for 143P/Kowal-Mrkos of 9.9 +/- 8.1 per cent/100 nm, which is very typical of Jupiter-family comets, the majority of which have reflectivity gradients in the range 0-13 per cent (100 nm)-1. The spectral gradient for comet 133P/Elst-Pizarro is amongst the bluest yet measured. We measure a (V-R) colour index value of 0.14 +/- 0.11 for the nucleus of 133P/Elst-Pizarro which is considerably lower than previous measurements. A possible explanation for this difference is considered.
Resumo:
The SuperWASP project is an ultra-wide angle search for extra solar planetary transits. However, it can also serendipitously detect solar system objects, such as asteroids and comets. Each SuperWASP instrument consists of up to eight cameras, combined with high-quality peltier-cooled CCDs, which photometrically survey large numbers of stars in the magnitude range 7 15. Each camera covers a 7.8 × 7.8 degree field of view. Located on La Palma, the SuperWASP-I instrument has been observing the Northern Hemisphere with five cameras since its inauguration in April 2004. The ultra-wide angle field of view gives SuperWASP the possibility of discovering new fast moving (near to Earth) asteroids that could have been missed by other instruments. However, it provides an excellent opportunity to produce a magnitude-limited lightcurve survey of known main belt asteroids. As slow moving asteroids stay within a single SuperWASP field for several weeks, and may be seen in many fields, a survey of all objects brighter than magnitude 15 is possible. This will provide a significant increase in the total number of lightcurves available for statistical studies without the inherent bias against longer periods present in the current data sets. We present the methodology used in the automated collection of asteroid data from SuperWASP and some of the first examples of lightcurves from numbered asteroids.
Resumo:
The WASP project and infrastructure supporting the SuperWASP Facility are described. As the instrument, reduction pipeline and archive system are now fully operative we expect the system to have a major impact in the discovery of bright exo-planet candidates as well in more general variable star projects.
Resumo:
The Amor-type near-Earth Asteroid (10302) 1989 ML has an “Earth-like” orbit (period 1.44 yr, eccentricity 0.14, inclination 4.4°), therefore the energy required to reach it from the Earth is relatively small making it a very attractive target for rendezvous missions. We have observed 1989 ML in the thermal infrared using the Spitzer Space Telescope, and compared these data with optical and near-infrared observations. The Spitzer results imply a diameter of 0.28±0.05 km and a geometric albedo of 0.37±0.15; together with the reflectance spectrum they are consistent with the relatively rare E classification.
Resumo:
We have performed photometric observations of nearly seven million stars with 8 <V <15 with the SuperWASP-North instrument from La Palma between 2004 May to September. Fields in the right ascension range 17-18h, yielding over 185000 stars with sufficient quality data, have been searched for transits using a modified box least-squares (BLS) algorithm. We find a total of 58 initial transiting candidates which have high signal-to-noise ratio in the BLS, show multiple transit-like dips and have passed visual inspection. Analysis of the blending and the inferred planetary radii for these candidates leave, a total of seven transiting planet candidates which pass all the tests plus four which pass the majority. We discuss the derived parameters for these candidates and their properties and comment on the implications for future transit searches.
Resumo:
The SuperWASP-I (Wide Angle Search for Planets-I) instrument observed 6.7 million stars between 8 and 15mag from La Palma during the 2004 May-September season. Our transit-hunting algorithm selected 11626 objects from the 184442 stars within the RA (right ascension) range 18-21h. We describe our thorough selection procedure whereby catalogue information is exploited along with careful study of the SuperWASP data to filter out, as far as possible, transit mimics. We have identified 35 candidates which we recommend for follow-up observations.
Resumo:
The Wide Angle Search for Planets (WASP) photometrically surveys a large number of nearby stars to uncover candidate extrasolar planet systems by virtue of small-amplitude light curve dips on a