982 resultados para photoluminescence (PL)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Y0.9-xGdxEu0.1BO3 phosphors were synthesized by spray drying (SD) method, and the results were compared with those by conventional solid state (SS) and citrate gel (GC) methods. The PL intensity of phosphors increases with the increase of x value in Y0.9-xGdxEu0.1BO3 (prepared by SD) due to an energy migration process like Gd3+ - (Gd3+)(n) - Eu3+ occurred in the material. Compared with the latter two methods, the phosphor particles prepared by spray drying method have a better morphology, such as homogeneous size (about 1similar to3 mum) with spherical shape and smooth surface. Furthermore, the spray drying-derived phosphors have higher photoluminescence (PL) intensity than those by citrate gel method, but still a little lower than those by the solid state method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this presentation is to report a new result of afterglow materials. The Y2OS: Ln(3+) (Ln = Sm, Tm) phosphors show bright reddish orange and orange-yellow colors when excited by UV or visible light. The main spectroscopic characterizations of Sin(3+) and Tin(3+) in yttrium oxysulfide and their long-lasting phosphorescence were measured and discussed in this presentation. Their long-lasting phosphorescence can be seen by the naked eyes clearly for about one hour in the dark room after the Irradiation light sources were removed. XRD and photoluminescence (PL) spectra as well as the luminance decay were used to characterize these long-lasting phosphorescence phosphors. The results of XRD indicate that the products synthesized through the flux fusion method tinder 1050 degreesC, for 6 It have a good crystallization without any detectable amount of impurity phase. Both the PL spectra and luminance decay results reveal that these phosphors have efficient luminescent and good long-lasting properties. We believe that the experimental data gathered in our present work will be. useful in finding some new long-lasting phosphors with different colors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The synthesis and luminescence properties of Zn2SiO4:Mn phosphor layers on spherical silica spheres,i.e.,a kind of core-shell complex phosphor,Zn2SiO4:Mn@SiO2 were described.Firstly,monodisperse silica spheres were obtained via the Stober method by the hydrolysis of tetraethoxysilane(TEOS)Si(OC2H5)4 under base condition (using NH4OH as the catalyst).Secondly,the silica spheres were coated with a Zn2SiO4:Mn phosphor layer by a Pechini sol-gel process.X-ray diffraction(XRD),scanning electron microscope(SEM),energy-dispersive X-ray spectrum(EDS) and photoluminescence(PL) were employed to characterize the resulting complex phosphor.The results comfirm that 1000℃ annealed sample consists of crystalline Zn2SiO4:Mn shells and amorphous SiO2 cores.The phosphor show the green emission of Mn2+ at 521nm corresponding 4T1(4G)-6A1(6S) transition,and the possible luminescence mechanism is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New single-polymer electroluminescent systems containing two individual emission species - polyfluorenes as a blue host and 2,1,3-benzothiadiazole derivative units as an orange dopant on the main chain - have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue(lambda(max) = 421 nm/445 nm) and orange emission (lambda(max) = 564 nm)from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light-emitting diodes (PLEDs) based on the single-polymer systems has been investigated. The introduction of the highly efficient 4,7-bis(4-(N-phenyl-N-(4-methylphenyl)amino)phenyl)-2,1,3-benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single-layer device fabricated in air (indium tin oxide/poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure-white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m(-2), luminance efficiency of 7.30 cd A(-1), and power efficiency of 3.34 lm W-1 can be obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Nano-onions" with multifold alternating CdS/CdSe or CdSe/CdS structure have been synthesized via a two-phase approach. The influences of shell on photoluminescence (PL) quantum yields (QYs) and PL lifetimes are investigated and discussed. It is found that the outmost shell plays an important role in the PL QYs and PL lifetimes of the multishells "onion-like" nanocrystals. The PL QYs and PL lifetimes fluctuate regularly with CdSe and CdS shells. The PL QY increases when the nanocrystals have an outmost CdS shell; however, it decreases dramatically with the outmost CdSe shell. The trend of the change of PL lifetimes is consistent with that of the QYs. The crystal structure and composition of the novel nano-onions are characterized by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-crystalline C-60 center dot 1m-xylene nanorods with a hexagonal structure were successfully synthesized by evaporating a C-60 solution in m-xylene at room temperature. The ratio of the length to the diameter of the nanorods can be controlled in the range of approximate to 10 to over 1000 for different applications. The photoluminescence (PL) intensity of the nanorods is about 2 orders of magnitude higher than that for pristine C-60 crystals in air. Both UV and Raman results indicate that there is no charge transfer between C-60 and m-xylene. It was found that the interaction between C-60 and m-xylene molecules is of the van der Waals type. This interaction reduces the icosahedral symmetry of C-60 molecule and induces strong PL from the solvate nanorods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO and ZnO: Zn powder phosphors were prepared by the polyol-method followed by annealing in air and reducing gas, respectively. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectra (XPS), electron paramagnetic resonance (EPR), and photoluminescence (PL) and cathodoluminescence ( CL) spectra, respectively. The results indicate that all samples are in agreement with the hexagonal structure of the ZnO phase and the particle sizes are in the range of 1-2 mu m. The PL and CL spectra of ZnO powders annealed at 950 degrees C in air consist of a weak ultraviolet emission band ( similar to 390 nm) and a broad emission band centered at about 527 nm, exhibiting yellow emission color to the naked eyes. When the sample was reduced at the temperatures from 500 to 1050 degrees C, the yellow emission decreased gradually and disappeared completely at 800 degrees C, whereas the ultraviolet emission band became the strongest. Above this temperature, the green emission ( similar to 500 nm) appeared and increased with increasing of reducing temperatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Indium hydroxide, In(OH)(3), nano-microstructures with two kinds of morphology, nanorod bundles (around 500 nm in length and 200 nm in diameter) and caddice spherelike agglomerates (around 750 - 1000 nm in diameter), were successfully prepared by the cetyltrimethylammonium bromide (CTAB)/water/cyclohexane/n-pentanol microemulsion-mediated hydrothermal process. Calcination of the In(OH)(3) crystals with different morphologies (nanorod bundles and spheres) at 600 degrees C in air yielded In2O3 crystals with the same morphology. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The pH values of microemulsion play an important role in the morphological control of the as-formed In(OH)(3) nano-microstructures from the hydrothermal process. The formation mechanisms for the In( OH) 3 nano- microstructures have been proposed on an aggregation mechanism. In2O3 nanorod bundles and spheres show a similar blue emission peaking around 416 and 439 nm under the 383-nm UV excitation, which is mainly attributed to the oxygen vacancies in the In2O3 nano-microstructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dopant/host methodology, which enables efficient tuning of emission color and enhancement of the electroluminescence (EL) efficiency of organic light emitting diodes (OLEDs) based on small molecules, is applied to the design and synthesis of highly efficient green light emitting polymers. Highly efficient green light emitting polymers were obtained by covalently attaching just 0.3-1.0 mol% of a green dopant, 4-(N,N-diphenyl) amino-1,8-naphthaliniide (DPAN), to the pendant chain of polyfluorene (the host). The polymers emit green light and exhibit a high photoluminescence (PL) quantum yield of Lip to 0.96 in solid films, which is attributed to the energy transfer from the polyfluorene host to the DPAN dopant unit. Single layer devices (device configuration: ITO/PEDOT/Polymer/Ca/Al) of the polymers exhibit a turn on voltage of 4.8 V, luminance efficiency of 7.43 cd A(-1), power efficiency of 2.96 lm W-1 and CIE coordinates at (0.26, 0.58). The good device performance can be attributed to the energy transfer and charge trapping from the polyfluorene host to the DPAN dopant unit as well as the molecular dispersion of the dopant in the host.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple, efficient and quick method has been established for the synthesis of CePO4:Tb nanorods and CePO4:Tb/LaPO4 core/shell nanorods via ultrasound irradiation of inorganic salt aqueous solution under ambient conditions for 2 h. The as-prepared products were characterized by means of powder x-ray diffraction (PXRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction ( SAED), x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra and lifetimes. TEM micrographs show that all of the as-prepared cerium phosphate products have rod-like shape, and have a relatively high degree of crystallinity and uniformity. HRTEM micrographs and SAED results prove that these nanorods are single crystalline in nature. The emission intensity and lifetime of the CePO4:Tb/LaPO4 core/shell nanorods increased significantly with respect to those of CePO4: Tb core nanorods under the same conditions. A substantial reduction in reaction time as well as reaction temperature is observed compared with the hydrothermal process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As-synthesized ZnO nanostructures with a bladed bundle-like architecture have been fabricated from a flower-like precursor ZnO (.) 0.33ZnBr(2) (.) 1.74H(2)O via a mechanism of dissolution - recrystallization. Experimental conditions, such as initial reactants and reaction time, are examined. The results show that no bladed bundle-like ZnO hierarchical nanostructures can be obtained by using the same molar amount of other zinc salts, such as ZnBr2, instead of the flower-like ZnO (.) 0.33ZnBr(2) (.) 1.74H(2)O precursor, and keeping other conditions unchanged. The products were characterized by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The ZnO nanostructures are mainly composed of nanowires with a diameter around 40 - 50 nm and length up to 1.5 - 2.5 mu m. Meanwhile, ZnO nanoflakes with a thickness of about 4 - 5 nm attached to the surface of ZnO nanowires with a preferred radially aligned orientation. Furthermore, the photoluminescence (PL) measurements exhibited the unique white-light-emitting characteristic of hierarchical ZnO nanostructures. The emission spectra cover the whole visible region from 380 to 700 nm.