926 resultados para peak to side lobe ratio
Concentration of organic compounds in aerosols and surface waters of the East Atlantic and Antarctic
Resumo:
The data on content and composition of lipids and aliphatic hydrocarbons (HC) in aerosols and surface waters obtained during the spring-summer periods of 2001 and 2003 along the vessel route from the North Sea to the Antarctic and backwards are presented. It was shown that the distribution of organic compounds is caused by influence of zonal supply of eolian matter from land, anthropogenic, and marine autochtonous sources. Concentrations of organic compounds in the aerosols varied from 0.22 to 13.04 ng/m**3 for lipids and from 0.04 to 7.03 ng/m**3 for aliphatic HC; in surface waters, it from 9 to 84 and from 1 to 53 µg/l, respectively. There is correlation between fluxes of lithogenic fraction of the aerosols, HC, and lipids. Growth of productivity in the aquatic area increases levels of the HC in the surface waters but to a lower degree than HC supply with oil contamination.
Resumo:
Basalts collected during drilling and diving programs on Serocki Volcano mostly fall within a limited compositional range, and are moderately evolved, normal MORBs with distinctive high MgO contents (averaging 7.60 wt%) and high A1203 concentrations (averaging 16.14 wt% in whole rock samples). However, samples recovered from within the central crater have lower Ti02 and FeO*/MgO, and higher MgO and Al2O3 concentrations, and are most similar to glasses recovered at Site 649 about 45 km to the north. Comparison of the observed geochemical variations with low-pressure experimental work and other samples from the region suggests that the Serocki Volcano and Site 649 data are compatible with crystal-liquid fractionation involving both olivine and early-stage clinopyroxene, as well as plagioclase, and that the sources may be similar even though Sites 648 and 649 are located in different, but adjacent, spreading cells. Consideration of the stratigraphy and morphology of Serocki Volcano suggests that this feature is more properly described as a megatumulus or lava delta, associated with a steeper, conical peak to the southwest. The evolution of Serocki Volcano involved early construction of a marginal rampart of pillows, followed by doming of this feature and the formation of a perched lava pond. Draining of this pond resulted in collapse and the formation of the central crater.
Resumo:
The modern Eastern Equatorial Pacific (EEP) Ocean is a large oceanic source of carbon to the atmosphere1. Primary productivity over large areas of the EEP is limited by silicic acid and iron availability, and because of this constraint the organic carbon export to the deep ocean is unable to compensate for the outgassing of carbon dioxide that occurs through upwelling of deep waters. It has been suggested that the delivery of dust-borne iron to the glacial ocean could have increased primary productivity and enhanced deep-sea carbon export in this region, lowering atmospheric carbon dioxide concentrations during glacial periods. Such a role for the EEP is supported by higher organic carbon burial rates documented in underlying glacial sediments but lower opal accumulation rates cast doubts on the importance of the EEP as an oceanic region for significant glacial carbon dioxide drawdown. Here we present a new silicon isotope record that suggests the paradoxical decline in opal accumulation rate in the glacial EEP results from a decrease in the silicon to carbon uptake ratio of diatoms under conditions of increased iron availability from enhanced dust input. Consequently, our study supports the idea of an invigorated biological pump in this region during the last glacial period that could have contributed to glacial carbon dioxide drawdown. Additionally, using evidence from silicon and nitrogen isotope changes, we infer that, in contrast to the modern situation, the biological productivity in this region is not constrained by the availability of iron, silicon and nitrogen during the glacial period. We hypothesize that an invigorated biological carbon dioxide pump constrained perhaps only by phosphorus limitation was a more common occurrence in low-latitude areas of the glacial ocean.
Resumo:
To better understand the composition, characteristics of helium diffusion, and size distribution of interplanetary dust particles (IDPs) responsible for the long-term retention of extraterrestrial 3He, we carried out leaching, stepped heating, and sieving experiments on pelagic clays that varied in age from 0.5 Ma to ~90 Myr. The leaching experiments suggest that the host phase(s) of 3He in geologically old sediments are neither organic matter nor refractory phases, such as diamond, graphite, Al2O3, and SiC, but are consistent with extraterrestrial silicates, Fe-Ni sulfides, and possibly magnetite. Stepped heating experiments demonstrate that the 3He release profiles from the magnetic and non-magnetic components of the pelagic clays are remarkably similar. Because helium diffusion is likely to be controlled by mineral chemistry and structure, the stepped heating results suggest a single carrier that may be magnetite, or more probably a phase associated with magnetite. Furthermore, the stepped outgassing experiments indicate that about 20% of the 3He will be lost through diffusion at seafloor temperatures after 50 Myrs, while sedimentary rocks exposed on the Earth's surface for the same amount of time would lose up to 60%. The absolute magnitude of the 3He loss is, however, likely to depend upon the 3He concentration profile within the IDPs, which is not well known. Contrary to previous suggestions that micrometeorites in the size range of 50-100 µm in diameter are responsible for the extraterrestrial 3He in geologically old sediments [Stuart, F.M., Harrop, P.J., Knott, S., Turner, G., 1999. Laser extraction of helium isotopes from Antarctic micrometeorites: source of He and implications for the flux of extraterrestrial 3He flux to earth. Geochimica et Cosmochimica Acta, 63, 2653-2665, doi:10.1016/S0016-7037(99)00161-1], our sieving experiment demonstrates that at most 20% of the 3He is carried by particles greater than 50 µm in diameter. The size-distribution of the 3He-bearing particles implies that extraterrestrial 3He in sediments record the IDP flux rather than the micrometeorite flux.
Resumo:
Identification of a sediment/basement contact using seismic reflection recordings has proven to be extremely difficult in wide areas of the North Pacific Ocean owing to the presence of massive, highly reflective chert layers within the sediment column. Leg 136 of the Ocean Drilling Program recovered coherent pieces of chert of sufficient size for the first comprehensive laboratory measurements of the seismic properties of this material. Compressional-wave velocities of six samples at 40-MPa confining pressure averaged 5.33 km/s, whereas shear-wave velocities at the same pressure averaged 3.48 km/s. Velocities were independent of porosity, which ranged from 5% to 13%, suggesting that pores within the samples were mostly high aspect ratio vugs as opposed to low aspect ratio cracks. Back-scattered electron images made with a scanning electron microscope confirmed this observation. Acoustic impedances were calculated for the chert samples and from shipboard measurements of the red clay sediment overlying the chert layers. An extremely large compressional-wave reflection coefficient (0.73) characterized the interface between the two lithologies. A synthetic seismogram was calculated using chert and typical pelagic carbonate properties to illustrate the influence of chert layers on a marine seismic-reflection section. Compressional-wave to shear-wave velocity ratios of the chert samples (Vp/Vs =1.53) are close to that of single-crystal quartz in spite of variable porosity. Shear-wave reflection coefficients are estimated to be approximately 0.94. A compressional-wave reflection coefficient for a basement/sediment (carbonate) interface is estimated to be approximately 0.50, significantly less than that of sediment/chert.
Resumo:
Based on data obtained at three stations in coastal waters of the Black Sea off Sevastopol in 2000 and 2001, we present seasonal dynamics of the carbon to chlorophyll a ratio in nano- and microphy-toplankton. This parameter varied approximately tenfold throughout the year. Its maximum values (442-500) were obtained in summer (July), when Pyrrophyta dominated in phytoplankton. Minimum values (36-56) were observed in winter (December),when diatomaceous species predominated. We derive a regression relating the carbon to chlorophyll a ratio to proportion of Pyrrophyta in total phytoplankton biomass, doing so separately for warm and cold seasons. Regression equations demonstrate coupled action of irradiance, temperature, and nutrient availability on the carbon to chlorophyll a ratio. For Pyrrophyta phytoplankton assemblage R**2 = 0.95, and for diatomaceous one R**2 = 0.87.
Resumo:
Among-lake variation in mercury (Hg) concentrations in landlocked Arctic char was examined in 27 char populations from remote lakes across the Canadian Arctic. A total of 520 landlocked Arctic char were collected from 27 lakes, as well as sediments and surface water from a subset of lakes in 1999, 2002, and 2005 to 2007. Size, length, age, and trophic position (d15N) of individual char were determined and relationships with total Hg (THg) concentrations investigated, to identify a common covariate for adjustment using analysis of covariance (ANCOVA). A subset of 216 char from 24 populations was used for spatial comparison, after length-adjustment. The influence of trophic position and food web length and abiotic characteristics such as location, geomorphology, lake area, catchment area, catchment-to-lake area ratio of the lakes on adjusted THg concentrations in char muscle tissue were then evaluated. Arctic char from Amituk Lake (Cornwallis Island) had the highest Hg concentrations (1.31 µg/g wet wt), while Tessisoak Lake (Labrador, 0.07 µg/g wet wt) had the lowest. Concentrations of THg were positively correlated with size, d15N, and age, respectively, in 88,71, and 58% of 24 char populations. Length and d15N were correlated in 67% of 24 char populations. Food chain length did not explain the differences in length-adjusted THg concentrations in char. No relationships between adjusted THg concentrations in char and latitude or longitude were found, however, THg concentrations in char showed a positive correlation with catchment-to-lake area ratio. Furthermore, we conclude that inputs from the surrounding environment may influence THg concentrations, and will ultimately affect THg concentrations in char as a result of predicted climate-driven changes that may occur in Arctic lake watersheds.
Resumo:
Coccolithophores are unicellular phytoplankton that produce calcium carbonate coccoliths as an exoskeleton. Emiliania huxleyi, the most abundant coccolithophore in the world's ocean, plays a major role in the global carbon cycle by regulating the exchange of CO2 across the ocean-atmosphere interface through photosynthesis and calcium carbonate precipitation. As CO2 concentration is rising in the atmosphere, the ocean is acidifying and ammonium (NH4) concentration of future ocean water is expected to rise. The latter is attributed to increasing anthropogenic nitrogen (N) deposition, increasing rates of cyanobacterial N2 fixation due to warmer and more stratified oceans, and decreased rates of nitrification due to ocean acidification. Thus future global climate change will cause oceanic phytoplankton to experience changes in multiple environmental parameters including CO2, pH, temperature and nitrogen source. This study reports on the combined effect of elevated pCO2 and increased NH4 to nitrate (NO3) ratio (NH4/NO3) on E. huxleyi, maintained in continuous cultures for more than 200 generations under two pCO2 levels and two different N sources. Here we show that NH4 assimilation under N-replete conditions depresses calcification at both low and high pCO2, alters coccolith morphology, and increases primary production. We observed that N source and pCO2 synergistically drive growth rates, cell size and the ratio of inorganic to organic carbon. These responses to N source suggest that, compared to increasing CO2 alone, a greater disruption of the organic carbon pump could be expected in response to the combined effect of increased NH4/NO3 ratio and CO2 level in the future acidified ocean. Additional experiments conducted under lower nutrient conditions are needed prior to extrapolating our findings to the global oceans. Nonetheless, our results emphasize the need to assess combined effects of multiple environmental parameters on phytoplankton biology in order to develop accurate predictions of phytoplankton responses to ocean acidification.
Resumo:
The large-diameter piston core LL44-GPC3 from the central North Pacific Ocean records continuous sedimentation of eolian dust since the Late Cretaceous. Two intervals resolved by Nd and Pb isotopic data relate to dust coming from America (prior to ~40 Ma) and dust coming from Asia (since ~40 Ma). The Intertropical Convergence Zone (ITCZ) separates these depositional regimes today and may have been at a paleolatitude of ~23°N prior to 40 Ma. Such a northerly location of the ITCZ is consistent with sluggish atmospheric circulation and warm climate for the Northern Hemisphere of the early to middle Eocene. Since ~40 Ma, correlations between Nd (~7.55 > epsilon-Nd(t) > ~10.81) and Pb (18.625 < 206/4Pb < 18.879; 15.624 < 207/4Pb < 15.666; 38.611 < 208/4Pb < 38.960; 0.8294 < 207/6Pb < 0.8389; 2.0539 < 208/6Pb < 2.0743) isotopes reflect the progressive drying of central Asia triggered by the westward retreat of the paleo-Tethys. Comparisons between the changes with time in the isotopically well-defined dust flux and Nd and Pb isotopic compositions of Pacific deep water allow one to draw two major conclusions: (1) dust-bound Nd became a resolvable contribution to Pacific seawater only after the one order of magnitude increase in dust flux starting at ~3.5 Ma. Therefore eolian Nd was unimportant for Pacific seawater Nd prior to 3.5 Ma. (2) The lack of a response of Pacific deep water Pb to this huge flux increase suggests that dust-bound Pb has never been important. Instead, mobile Pb associated with island arc volcanic exhalatives probably consists of a significant contribution to Pacific deep water Pb and possibly to seawater elsewhere far away from landmasses.
Resumo:
We investigated the magnetic and paleomagnetic properties of 77 basalt samples from Holes 482, 482C, 482D, 483, 483B, 485, and 485A in order to study the structure and development of the ocean's crust. During the course of this study, we measured the natural remanent magnetization, Jn, and its stability in an alternating magnetic field; the magnetic susceptibility, x; the saturation magnetization, Js; the saturation remanent magnetization, Jrs; the coercivity of maximum remanence, HCR; and the median destructive fields MDFn (for Jn) and MDFs for Jrs. A thermomagnetic analysis for Js and Jrs was also performed; these latter measurements were made on the same samples.
Resumo:
Boron contents and boron, carbon and oxygen stable isotopes were determined for authigenic carbonates recovered from Ocean Drilling Program Leg 146, Oregon margin. Carbonate precipitates are the most widespread authigenic phase in the shallow accretionary wedge and carry chemical information about long-term variations in pore fluid origin and flow paths in the Cascadia subduction zone. Drilling the first ridge (toe area including the frontal thrust) and the second ridge (or Hydrate Ridge) of the prism demonstrated different fluid regimes, with higher B contents in the authigenic precipitates at the toe. The delta11B of 18 authigenic precipitates analysed ranges from 13.9 per mil to as high as 39.8 per mil, extending the upper range of previously reported carbonate delta11B values considerably. When related to the delta11B ratio of their parent solutions, these data are characteristic of fluid-related processes in accretionary prisms. Together with delta13C and delta18O, delta11B ratios of the carbonate concretions, nodules and crusts allow one to distinguish between precipitation influenced by (i) seawater, (ii) fluid reservoirs at different depth levels within the accretionary prism and (iii) cage water from dissociated gas hydrates, the latter possibly indicating a fluctuation of the bottom simulating reflector during most recent Earth's history. From this first systematic boron study on authigenic precipitates from an accretionary prism it is suggested that B contents of such carbonate crusts and concretions exceed those reported for other marine carbonates. Given the abundance of such precipitates at convergent margins, they represent a significant B sink in geochemical cycling. Isotopic compositions of the parent fluids to the carbonates mirror B chemistry of modern pore waters from convergent margins. The precipitates carry information of different subduction-related fluid processes over a certain period of time, and hence are a crucial tracer in the investigation of palaeo-fluid flow.
Resumo:
Results of studying isotopic composition of helium in underground fluids of the Baikal-Mongolian region during the last quarter of XX century are summarized. Determinations of 3He/4He ratio in 139 samples of gas phase from fluids, collected at 104 points of the Baikal rift zone and adjacent structures are given. 3He/4He values lie within the range from 1x10**-8 (typical for crustal radiogenic helium) to 1.1x10**-5 (close to typical MORB reservoir). Repeated sampling in some points during more than 20 years showed stability of helium isotopic composition in time in each of them at any level of 3He/4He values. There is no systematic differences of 3He/4He in samples from surface water sources and deeper intervals of boreholes in the same areas. Universal relationship between isotopic composition of helium and general composition of gas phase is absent either, but the minimum 3He/4He values occurred in methane gas of hydrocarbon deposits, whereas in nitrogen and carbon dioxide gases of helium composition varied (in the latter maximum 3He/4He values have been measured). According to N2/Ar_atm ratio nitrogen gases are atmospheric. In carbonic gas fN2/fNe ratio indicates presence of excessive (non-atmogenic) nitrogen, but the attitude CO2/3He differs from one in MORB. Comparison of helium isotopic composition with its concentration and composition of the main components of gas phase from fluids shows that it is formed under influence of fractionation of components with different solubility in the gas-water system and generation/consumption of reactive gases in the crust. Structural and tectonic elements of the region differ from the spectrum of 3He/4He values. At the pre-Riphean Siberian Platform the mean 3He/4He = (3.6+/-0.9)x10**- 8 is very close to radiogenic one. In the Paleozoic crust of Khangay 3He/4He = (16.3+/-4.6)x10**-8, and the most probable estimate is (12.3+/-2.9)x10**-8. In structures of the eastern flank of the Baikal rift zone (Khentei, Dauria) affected by the Mz-Kz activization 3He/4He values range from 4.4x10**-8 to 2.14x10**-6 (average 0.94x10**-6). Distribution of 3He/4He values across the strike of the Baikal rift zone indicates advective heat transfer from the mantle not only in the rift zone, but also much further to the east. In fluids of the Baikal rift zone range of 3He/4He values is the widest: from 4x10**-8 to 1.1x10**-5. Their variations along the strike of the rift zone are clearly patterned, namely, decrease of 3He/4He values in both directions from the Tunka depression. Accompanied by decrease in density of conductive heat flow and in size of rift basins, this trend indicates decrease in intensity of advective heat transfer from the mantle to peripheral segments of the rift zone. Comparing this trend with data on other continental rift zones and mid-ocean ridges leads to the conclusion about fundamental differences in mechanisms of interaction between the crust and the mantle in these environments.
Resumo:
Total organic carbon to total nitrogen ratio (C/N) and their isotopic composition (d13CTOC vs. d15NTN) are oft-applied proxies to discern terrigenous from marine sourced organics and to unravel the ancient environmental information. In high depositional Asian marginal seas, matrixes, including N-bearing minerals, dilution leads to illusive and even contradictive interpretations. We use KOH-KOBr to separate operationally defined total organic matter into oxidizable (labile) and residual fractions for content and isotope measurements. In a sediment core in the Okinawa Trough, significant amounts of carbon and nitrogen existed in the residual phase, in which the C/N ratio was ~9 resembling most documented sedimentary bulk C/N ratios in the China marginal seas. Such similarity creates a pseudo-C/N interrupting the application of bulk C/N. The residual carbon, though composition unknown, it displayed a d13C range (-22.7 to -18.9 per mil, mean -20.7 per mil) similar to black carbon (-24.0 to -22.8 per mil) in East China Sea surface sediments. After removing residual fraction, we found the temporal pattern of d13CLOC in labile fraction (LOC) was more variable but broadly agreed with the atmospheric pCO2-induced changes in marine endmember d13C. Thus, we suggested adding pCO2-induced endmember modulation into two-endmember mixing model for paleo-environment reconstruction. Meanwhile, the residual nitrogen revealed an intimate association with illite content suggesting its terrestrial origin. Additionally, d15N in residual fraction likely carried the climate imprint from land. Further studies are required to explore the controlling factors for carbon and nitrogen isotopic speciation and to retrieve the information locked in the residual fraction.
Resumo:
Here, for the first time, we have carried out synoptic measurements of viral production and decay rates in continental-shelf and deep-sea sediments of the Mediterranean Sea to explore the viral balance. The net viral production and decay rates were significantly correlated, and were also related to prokaryotic heterotrophic production. The addition of enzymes increased the decay rates in the surface sediments, but not in the subsurface sediments. Both the viral production and the decay rates decreased significantly in the deeper sediment layers, while the virus-to-prokaryote abundance ratio increased, suggesting a high preservation of viruses in the subsurface sediments. Viral decay did not balance viral production at any of the sites investigated, accounting on average for c. 32% of the gross viral production in the marine sediments. We estimate that the carbon (C) released by viral decay contributed 6-23% to the total C released by the viral shunt. Because only ca. 2% of the viruses produced can infect other prokaryotes, the majority is not subjected to direct lysis and potentially remains as a food source for benthic consumers. The results reported here suggest that viral decay can play an important role in biogeochemical cycles and benthic trophodynamics.