931 resultados para paint manufacturing process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased exploitation of carbon fiber reinforced polymers (CFRP) is inevitably bringing about an increase in production scraps and end-of-life components, resulting in a sharp increase in CFRP waste. Therefore, it is of paramount importance to find efficient ways to reintroduce waste into the manufacturing cycle. At present, several recycling methods for treating CFRPs are available, even if all of them still have to be optimized. The step after CFRP recycling, and also the key to build a solid and sustainable CFRP recycling market, is represented by the utilization of Re-CFs. The smartest way to utilize recovered carbon fibers is through the manufacturing of recycled CFRPs, that can be done by re-impregnating the recovered fibers with a new polymeric matrix. Fused Filament Fabrication (FFF) is one of the most widely used additive manufacturing (3D printing) techniques that fabricates parts with a polymeric filament deposition process that allows to produce parts adding material layer-by-layer, only where it is needed, saving energy, raw material cost, and waste. The filament can also contain fillers or reinforcements such as recycled short carbon fibers and this makes it perfectly compliant with the re-application of the shortened recycled CF. Therefore, in this thesis work recycled and virgin carbon fiber reinforced PLA filaments have been initially produced using 5% and 10% of CFs load. Properties and characteristics of the filaments have been determined conducting different analysis (TGA, DMA, DSC). Subsequently the 5%wt. Re-CFs filament has been used to 3D print specimens for mechanical characterization (DMA, tensile test and CTE), in order to evaluate properties of printed PLA composites containing Re-CFs and evaluate the feasibility of Re-CFs in 3D printing application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research work concerns the application of additive manufacturing (AM) technologies in new electric mobility sectors. The unmatched freedom that AM offers can potentially change the way electric motors are designed and manufactured. The thesis investigates the possibility of creating optimized electric machines that exploit AM technologies, with potential in various industrial sectors, including automotive and aerospace. In particular, we will evaluate how the design of electric motors can be improved by producing the rotor core using Laser Powder Bed Fusion (LPBF) and how the resulting design choices affect component performance. First, the metallurgical and soft magnetic properties of the pure iron and silicon iron alloy parts (Fe-3% wt.Si) produced by LPBF will be defined and discussed, considering the process parameters and the type of heat treatment. This research shows that using LPBF, both pure iron and iron silicon, the parts have mechanical and magnetic properties different from the laminated ones. Hence, FEM-based modeling will be employed to design the rotor core of an SYN RM machine to minimize torque ripple while maintaining structural integrity. Finally, we suggest that further research should extend the field of applicability to other electrical devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing environmental global regulations have directed scientific research towards more sustainable materials, even in the field of composite materials for additive manufacturing. In this context, the presented research is devoted to the development of thermoplastic composites for FDM application with a low environmental impact, focusing on the possibility to use wastes from different industrial processes as filler for the production of composite filaments for FDM 3D printing. In particular carbon fibers recycled by pyro-gasification process of CFRP scraps were used as reinforcing agent for PLA, a biobased polymeric matrix. Since the high value of CFs, the ability to re-use recycled CFs, replacing virgin ones, seems to be a promising option in terms of sustainability and circular economy. Moreover, wastes from different agricultural industries, i.e. wheat and rice production processes, were valorised and used as biofillers for the production of PLA-biocomposites. The integration of these agricultural wastes into PLA bioplastic allowed to obtain biocomposites with improved eco-sustainability, biodegradability, lightweight, and lower cost. Finally, the study of novel composites for FDM was extended towards elastomeric nanocomposite materials, in particular TPU reinforced with graphene. The research procedure of all projects involves the optimization of production methods of composite filaments with a particular attention on the possible degradation of polymeric matrices. Then, main thermal properties of 3D printed object are evaluated by TGA, DSC characterization. Additionally, specific heat capacity (CP) and Coefficient of Linear Thermal Expansion (CLTE) measurements are useful to estimate the attitude of composites for the prevention of typical FDM issues, i.e. shrinkage and warping. Finally, the mechanical properties of 3D printed composites and their anisotropy are investigated by tensile test using distinct kinds of specimens with different printing angles with respect to the testing direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The project aims to gather an understanding of additive manufacturing and other manufacturing 4.0 techniques with an eyesight for industrialization. First the internal material anisotropy of elements created with the most economically feasible FEM technique was established. An understanding of the main drivers for variability for AM was portrayed, with the focus on achieving material internal isotropy. Subsequently, a technique for deposition parameter optimization was presented, further procedure testing was performed following other polymeric materials and composites. A replicability assessment by means of the use of technology 4.0 was proposed, and subsequent industry findings gathered the ultimate need of developing a process that demonstrate how to re-engineer designs in order to show the best results with AM processing. The latest study aims to apply the Industrial Design and Structure Method (IDES) and applying all the knowledge previously stacked into fully reengineer a product with focus of applying tools from 4.0 era, from product feasibility studies, until CAE – FEM analysis and CAM – DfAM. These results would help in making AM and FDM processes a viable option to be combined with composites technologies to achieve a reliable, cost-effective manufacturing method that could also be used for mass market, industry applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser Powder Bed Fusion (LPBF) permits the manufacturing of parts with optimized geometry, enabling lightweight design of mechanical components in aerospace and automotive and the production of tools with conformal cooling channels. In order to produce parts with high strength-to-weight ratio, high-strength steels are required. To date, the most diffused high-strength steels for LPBF are hot-work tool steels, maraging and precipitation-hardening stainless steels, featuring different composition, feasibility and properties. Moreover, LPBF parts usually require a proper heat treatment and surface finishing, to develop the desired properties and reduce the high roughness resulting from LPBF. The present PhD thesis investigates the effect of different heat treatments and surface finishing on the microstructure and mechanical properties of a hot-work tool steel and a precipitation-hardening stainless steel manufactured via LPBF. The bibliographic section focuses on the main aspects of LPBF, hot-work tool steels and precipitation-hardening stainless steels. The experimental section is divided in two parts. Part A addresses the effect of different heat treatments and surface finishing on the microstructure, hardness, tensile and fatigue behaviour of a LPBF manufactured hot-work tool steel, to evaluate its feasibility for automotive and racing components. Results indicated the possibility to achieve high hardness and strength, comparable to the conventionally produced steel, but a great sensitivity of fatigue strength on defects and surface roughness resulting from LPBF. Part B investigates the effect of different heat treatments on the microstructure, hardness, tensile and notch-impact behaviour of a LPBF produced precipitation-hardening stainless steel, to assess its feasibility for tooling applications. Results indicated the possibility to achieve high hardness and strength also through a simple Direct Aging, enabling heat treatment simplification by exploiting the microstructural features resulting from LPBF.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computer controlled screwdriver is a modern technique to perform automatic screwing/unscrewing operations.The main focus is to study the integration of the computer controlled screwdriver for Robotic manufacturing in the ROS environment.This thesis describes a concept of automatic screwing mechanism composed by universal robots, in which one arm of the robot is for inserting cables and the other is for screwing the cables on the control panel switch gear box. So far this mechanism is carried out by human operators and is a fairly complex one to perform, due to the multiple cables and connections involved. It's for this reason that an automatic cabling and screwing process would be highly preferred within automotive/automation industries. A study is carried out to analyze the difficulties currently faced and a controller based algorithm is developed to replace the manual human efforts using universal robots, thereby allowing robot arms to insert the cables and screw them onto the control panel switch gear box. Experiments were conducted to evaluate the insertion and screwing strategy, which shows the result of inserting and screwing cables on the control panel switch gearbox precisely.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to present the concept of simulation for automatic machines and how it might be used to test and debug software implemented for an automatic machine. The simulation is used to detect errors and allow corrections of the code before the machine has been built. Simulation permits testing different solutions and improving the software to get an optimized one. Additionally, simulation can be used to keep track of a machine after the installation in order to improve the production process during the machine’s life cycle. The central argument of this project is discussing the advantage of using virtual commissioning to test the implemented software in a virtual environment. Such an environment is getting benefit in avoiding potential damages as well as reduction of time to have the machine ready to work. Also, the use of virtual commissioning allows testing different solutions without high losses of time and money. Subsequently, an optimized solution could be found after testing different proposed solutions. The software implemented is based on the Object-Oriented Programming paradigm which implies different features such as encapsulation, modularity, and reusability of the code. Therefore, this way of programming helps to get simplified code that is easier to be understood and debugged as well as its high efficiency. Finally, different communication protocols are implemented in order to allow communication between the real plant and the simulation model. By the outcome that this communication provides, we might be able to gather all the necessary data for the simulation and the analysis, in real-time, of the production process in a way to improve it during the machine life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision systems are powerful tools playing an increasingly important role in modern industry, to detect errors and maintain product standards. With the enlarged availability of affordable industrial cameras, computer vision algorithms have been increasingly applied in industrial manufacturing processes monitoring. Until a few years ago, industrial computer vision applications relied only on ad-hoc algorithms designed for the specific object and acquisition setup being monitored, with a strong focus on co-designing the acquisition and processing pipeline. Deep learning has overcome these limits providing greater flexibility and faster re-configuration. In this work, the process to be inspected consists in vials’ pack formation entering a freeze-dryer, which is a common scenario in pharmaceutical active ingredient packaging lines. To ensure that the machine produces proper packs, a vision system is installed at the entrance of the freeze-dryer to detect eventual anomalies with execution times compatible with the production specifications. Other constraints come from sterility and safety standards required in pharmaceutical manufacturing. This work presents an overview about the production line, with particular focus on the vision system designed, and about all trials conducted to obtain the final performance. Transfer learning, alleviating the requirement for a large number of training data, combined with data augmentation methods, consisting in the generation of synthetic images, were used to effectively increase the performances while reducing the cost of data acquisition and annotation. The proposed vision algorithm is composed by two main subtasks, designed respectively to vials counting and discrepancy detection. The first one was trained on more than 23k vials (about 300 images) and tested on 5k more (about 75 images), whereas 60 training images and 52 testing images were used for the second one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the effect of an additive process in manufacturing of thick composites. Airstone 780 E epoxy resin and 785H Hardener system is used in the analysis since it is widely used wind turbine blade, namely thick components. As a fiber, fabric by SAERTEX (812 g/m2) with a 0-90 degrees layup direction is used. Temperature overshoot is a major issue during the manufacturing of thick composites. A high temperature overshoot leads to an increase in residual stresses. These residual stresses are causing warping, delamination, dimensional instability, and undesired distortion of composite structures. A coupled thermo-mechanical model capable of predicting cure induced residual stresses have been built using the commercial FE software Abaqus®. The possibility of building thick composite components by means of adding a finite number of sub-laminates has been investigated. The results have been compared against components manufactured following a standard route. The influence of pre-curing of the sub-laminates has also been addressed and results compared with standard practice. As a result of the study, it is found that introducing additive process can prevent temperature overshoot to occur and benefits the residual stresses generation during the curing process. However, the process time required increases by 50%, therefore increasing the manufacturing costs. An optimized cure cycle is required to minimize process time and cure induced defects simultaneously.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixing is a fundamental unit operation in the pharmaceutical industry to ensure consistent product quality across different batches. It is usually carried out in mechanically stirred tanks, with a large variety of designs according to the process requirements. A key aspect of pharmaceutical manufacturing is the extensive and meticulous cleaning of the vessels between runs to prevent the risk of contamination. Single-use reactors represent an increasing trend in the industry since they do not require cleaning and sterilization, reducing the need for utilities such as steam to sterilize equipment and the time between production batches. In contrast to traditional stainless steel vessels, single-use reactors consist of a plastic bag used as a vessel and disposed of after use. This thesis aims to characterize the fluid dynamics features and the mixing performance of a commercially available single-use reactor. The characterization employs a combination of various experimental techniques. The analysis starts with the visual observation of the liquid behavior inside the vessel, focusing on the vortex shape evolution at different impeller speeds. The power consumption is then measured using a torque meter to quantify the power number. Particle Image Velocimetry (PIV) is employed to investigate local fluid dynamics properties such as mean flow field and mean and rms velocity profiles. The same experimental setup of PIV is exploited for another optical measurement technique, the Planar Laser-Induced Fluorescence (PLIF). The PLIF measurements complete the characterization of the reactor with the qualitative visualization of the turbulent flow and the quantitative assessment of the system performance through the mixing time. The results confirm good mixing performances for the single-use reactor over the investigated impeller speeds and reveal that the filling volume plays a significant role in the fluid dynamics of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic lupus erythematosus is an autoimmune disease that causes many psychological repercussions that have been studied through qualitative research. These are considered relevant, since they reveal the amplitude experienced by patients. Given this importance, this study aims to map the qualitative production in this theme, derived from studies of experiences of adult patients of both genders and that had used as a tool a semi-structured interview and/or field observations, and had made use of a sampling by a saturation criterion to determine the number of participants in each study. The survey was conducted in Pubmed, Lilacs, Psycinfo e Cochrane databases, searching productions in English and Portuguese idioms published between January 2005 and June 2012. The 19 revised papers that have dealt with patients in the acute phase of the disease showed themes that were categorized into eight topics that contemplated the experienced process at various stages, from the onset of the disease, extending through the knowledge of the diagnosis and the understanding of the manifestations of the disease, drug treatment and general care, evolution and prognosis. The collected papers also point to the difficulty of understanding, of the patients, on what consists the remission phase, revealing also that this is a clinical stage underexplored by psychological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

20