899 resultados para pH of colloidal suspension


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the Italian project CO2 Monitor, two culture experiments were carried out in vertical closed photobioreactors with Pleurochrysis cf. pseudoroscoffensis Gayral & Fresnel 1983, a coccolithophore isolated from the Gulf of Trieste (North Adriatic Sea). The aim of this study was to investigate the effects induced by pH variations due to CO2 emissions on its growth and morphology. Two experiments were carried out with two different CO2 concentrations (1 and 2%). Growth and cell size in light microscopy, morphology and coccolith size in scanning electron microscopy, particulate nitrogen (PN) and particulate inorganic and organic carbon (PIC and POC) content of the coccolithophore were investigated during the light and dark phases. Dissolved inorganic nutrient (nitrate and phosphate) concentrations and pH of the medium and the presence of heterotrophic prokaryotes (HP) were monitored as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dansgaard-Oeschger oscillations and Heinrich events described in North Atlantic sediments and Greenland ice are expressed in the climate of the tropics, for example, as documented in Arabian Sea sediments. Given the strength of this teleconnection, we seek to reconstruct its range of environmental impacts. We present geochemical and sedimentological data from core SO130-289KL from the Indus submarine slope spanning the last ~ 80 kyr. Elemental and grain size analyses consistently indicate that interstadials are characterized by an increased contribution of fluvial suspension from the Indus River. In contrast, stadials are characterized by an increased contribution of aeolian dust from the Arabian Peninsula. Decadal-scale shifts at climate transitions, such as onsets of interstadials, were coeval with changes in productivity-related proxies. Heinrich events stand out as especially dry and dusty events, indicating a dramatically weakened Indian summer monsoon, potentially increased winter monsoon circulation, and increased aridity on the Arabian Peninsula. This finding is consistent with other paleoclimate evidence for continental aridity in the northern tropics during these events. Our results strengthen the evidence that circum-North Atlantic temperature variations translate to hydrological shifts in the tropics, with major impacts on regional environmental conditions such as rainfall, river discharge, aeolian dust transport, and ocean margin anoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diversity of endolithic Dry Valley rock microorganisms was studied by evaluating the presence of morphotypes in enrichments. Storage of rock samples for 16 h over dry ice affected the diversity of endolithic organisms, especially that of algae and fungi. Diversity in various samples depended on rock location and exposure, on the rock type, and to some extent on the pH of the pulverized rock samples. In most cases sandstone contained more morphotypes than dolerite or granite. Presence of many different phototrophs resulted in greater diversity of the heterotrophs in the enrichments. Samples from Linnaeus Terrace and Battleship Promontory had higher morphotype (MT) numbers than those from more exposed sites such as New Mountain, University Valley, Dais, or Mt. Fleming. Beacon sandstone (13 samples) from Linnaeus Terrace varied greatly with respect to MT numbers, although the pH values ranged only from 4.2-5.3. The highest MT number of 24 per sample was obtained from the upper surface of a flat boulder tilted to the North. Only two MT's were found in a hard sandstone sample from the wind-exposed and more shaded east side of the Terrace. 15 sandstone samples from Battleship Promontory contained more diverse populations: there occurred a total of 131 different MT's in these samples as compared to only 68 in Linnaeus Terrace samples. Cysts of colorless flagellates were found in some Battleship Promontory samples; rnost samples were populated with a wealth of different cyanobacteria. Studies on the distribution of actinomycete morphotypes in Linnaeus Terrace sandstone revealed great differences between individual boulders. Identification tests and lipid analyses made with representative strains of the isolated 1500 pure cultures led to genus names such as Caulobacter, Blastobacter, Hyphomicrobium, Micrococcus, Arthrobacter, Brevibacterium, Corynebacterium, Bifidobacterium, Mycobacterium, Nocardia (Amycolata), Micromonospora, Streptomyces, Blastococcus, and Deinococcus. Our data demonstrate the great diversity of Antarctic endolithic microbial populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of contribution of micronodules of sand and silt size to chemical composition of various types of pelagic sediments, as well as use of published data indicate that in some types of bottom sediments micronodules are the principal carriers of manganese and nickel. These elements appear to constitute smaller fractions of colloidal iron and manganese hydroxides, as well as terrigenous material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1-MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records. Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave's catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. d13C and d18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7-0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. 'Hendy tests' indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four volcanic ash-bearing marine sediment cores and one ash-free reference core were examined during research cruise RV Meteor 54/2 offshore Nicaragua and Costa Rica to investigate the chemical composition of pore waters related to volcanic ash alteration. Sediments were composed of terrigenous matter derived from the adjacent continent and contained several distinct ash layers. Biogenic opal and carbonate were only minor components. The terrigenous fraction was mainly composed of smectite and other clay minerals while the pore water composition was strongly affected by the anaerobic degradation of particulate organic matter via microbial sulphate reduction. The alteration of volcanic matter showed only a minor effect on major element concentrations in pore waters. This is in contrast to prior studies based on long sediment cores taken during the DSDP, where deep sediments always showed distinct signs of volcanic ash alteration. The missing signal of ash alteration is probably caused by low reaction rates and the high background concentration of major dissolved ions in the seawater-derived pore fluids. Dissolved silica concentrations were, however, significantly enriched in ash-bearing cores and showed no relation to the low but variable contents of biogenic opal. Hence, the data suggest that silica concentrations were enhanced by ash dissolution. Thus, the dissolved silica profile measured in one of the sediment cores was used to derive the in-situ dissolution rate of volcanic glass particles in marine sediments. A non-steady state model was run over a period of 43 kyr applying a constant pH of 7.30 and a dissolved Al concentration of 0.05 ?M. The kinetic constant (AA) was varied systematically to fit the model to the measured dissolved silica-depth profile. The best fit to the data was obtained applying AA = 1.3 * 10**-U9 mol of Si/cm**2/ s. This in-situ rate of ash dissolution at the seafloor is three orders of magnitude smaller than the rate of ash dissolution determined in previous laboratory experiments. Our results therefore imply that field investigations are necessary to accurately predict natural dissolution rates of volcanic glasses in marine sediments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to their low metabolism and apparent poor ion regulation ability, sea urchins could be particularly sensitive to ocean acidification resulting from increased dissolution of atmospheric carbon dioxide. Therefore, we evaluated the acid-base regulation ability of the coral reef sea urchin Echinometra mathaei and the impact of decreased pH on its growth and respiration activity. The study was conducted in two identical artificial reef mesocosms during seven weeks. Experimental tanks were maintained respectively at mean pHT 7.7 and 8.05 (with field-like night and day variations). The major physico-chemical parameters were identical, only pCO2 and pHT differed. Results indicate that E. mathaei can regulate the pH of its coelomic fluid in the considered range of pH, allowing a sustainable growth and ensuring an unaffected respiratory metabolism, at least at short term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8 mmol/kg SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4 mmol/kg SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3 kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3 mmol/kg SW compared to unfed ones who showed a difference of about 0.5 mmol/kg SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH 7.7 to about twice that of the control individuals and, for those at pH 7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH 7.7 but not for those at pH 7.4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental results related to the effects of ocean acidification on planktonic marine microbes are still rather inconsistent and occasionally contradictory. Moreover, laboratory or field experiments that address the effects of changes in CO2 concentrations on heterotrophic microbes are very scarce, despite the major role of these organisms in the marine carbon cycle. We tested the direct effect of an elevated CO2 concentration (1000 ppmv) on the biomass and metabolic rates (leucine incorporation, CO2 fixation and respiration) of 2 isolates belonging to 2 relevant marine bacterial families, Rhodobacteraceae (strain MED165) and Flavobacteriaceae (strain MED217). Our results demonstrate that, contrary to some expectations, high pCO2 did not negatively affect bacterial growth but increased growth efficiency in the case of MED217. The elevated partial pressure of CO2 (pCO2) caused, in both cases, higher rates of CO2 fixation in the dissolved fraction and, in the case of MED217, lower respiration rates. Both responses would tend to increase the pH of seawater acting as a negative feedback between elevated atmospheric CO2 concentrations and ocean acidification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification (OA) resulting from anthropogenic emissions of carbon dioxide (CO2) has already lowered and is predicted to further lower surface ocean pH. There is a particular need to study effects of OA on organisms living in cold-water environments due to the higher solubility of CO2 at lower temperatures. Mussel larvae (Mytilus edulis) and shrimp larvae (Pandalus borealis) were kept under an ocean acidification scenario predicted for the year 2100 (pH 7.6) and compared against identical batches of organisms held under the current oceanic pH of 8.1, which acted as a control. The temperature was held at a constant 10°C in the mussel experiment and at 5°C in the shrimp experiment. There was no marked effect on fertilization success, development time, or abnormality to the D-shell stage, or on feeding of mussel larvae in the low-pH (pH 7.6) treatment. Mytilus edulis larvae were still able to develop a shell in seawater undersaturated with respect to aragonite (a mineral form of CaCO3), but the size of low-pH larvae was significantly smaller than in the control. After 2 mo of exposure the mussels were 28% smaller in the pH 7.6 treatment than in the control. The experiment with Pandalus borealis larvae ran from 1 through 35 days post hatch. Survival of shrimp larvae was not reduced after 5 wk of exposure to pH 7.6, but a significant delay in zoeal progression (development time) was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hatching process of the Pacific abalone Haliotis discus hannai was prolonged at a pH of 7.6 and pH 7.3, and the embryonic developmental success was reduced. The hatching rate at pH 7.3 was significantly (10.8%) lower than that of the control (pH 8.2). The malformation rates at pH 7.9 and pH 8.2 were less than 20% but were 53.8% and 77.3% at pH 7.6 and pH 7.3, respectively. When newly hatched larvae were incubated for 48 h at pH 7.3, only 2.7% of the larvae settled, while more than 70% of the larvae completed settlement in the other three pH treatments. However, most 24 h old larvae could complete metamorphosis in all four pH treatments. Overall, a 0.3-unit reduction in water pH will produce no negative effect on the early development of the Pacific abalone, but further reduction in pH to the values predicted for seawater by the end of this century will have strong detrimental effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a