910 resultados para optimization of the fracture parameters
Resumo:
Continuous research endeavors on hard turning (HT), both on machine tools and cutting tools, have made the previously reported daunting limits easily attainable in the modern scenario. This presents an opportunity for a systematic investigation on finding the current attainable limits of hard turning using a CNC turret lathe. Accordingly, this study aims to contribute to the existing literature by providing the latest experimental results of hard turning of AISI 4340 steel (69 HRC) using a CBN cutting tool. An orthogonal array was developed using a set of judiciously chosen cutting parameters. Subsequently, the longitudinal turning trials were carried out in accordance with a well-designed full factorial-based Taguchi matrix. The speculation indeed proved correct as a mirror finished optical quality machined surface (an average surface roughness value of 45 nm) was achieved by the conventional cutting method. Furthermore, Signal-to-noise (S/N) ratio analysis, Analysis of variance (ANOVA), and Multiple regression analysis were carried out on the experimental datasets to assert the dominance of each machining variable in dictating the machined surface roughness and to optimize the machining parameters. One of the key findings was that when feed rate during hard turning approaches very low (about 0.02mm/rev), it could alone be most significant (99.16%) parameter in influencing the machined surface roughness (Ra). This has, however also been shown that low feed rate results in high tool wear, so the selection of machining parameters for carrying out hard turning must be governed by a trade-off between the cost and quality considerations.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
Energy in today's short-range wireless communication is mostly spent on the analog- and digital hardware rather than on radiated power. Hence,purely information-theoretic considerations fail to achieve the lowest energy per information bit and the optimization process must carefully consider the overall transceiver. In this paper, we propose to perform cross-layer optimization, based on an energy-aware rate adaptation scheme combined with a physical layer that is able to properly adjust its processing effort to the data rate and the channel conditions to minimize the energy consumption per information bit. This energy proportional behavior is enabled by extending the classical system modes with additional configuration parameters at the various layers. Fine grained models of the power consumption of the hardware are developed to provide awareness of the physical layer capabilities to the medium access control layer. The joint application of the proposed energy-aware rate adaptation and modifications to the physical layer of an IEEE802.11n system, improves energy-efficiency (averaged over many noise and channel realizations) in all considered scenarios by up to 44%.
Resumo:
The design optimization of a cold-formed steel portal frame building is considered in this paper. The proposed genetic algorithm (GA) optimizer considers both topology (i.e., frame spacing and pitch) and cross-sectional sizes of the main structural members as the decision variables. Previous GAs in the literature were characterized by poor convergence, including slow progress, that usually results in excessive computation times and/or frequent failure to achieve an optimal or near-optimal solution. This is the main issue addressed in this paper. In an effort to improve the performance of the conventional GA, a niching strategy is presented that is shown to be an effective means of enhancing the dissimilarity of the solutions in each generation of the GA. Thus, population diversity is maintained and premature convergence is reduced significantly. Through benchmark examples, it is shown that the efficient GA proposed generates optimal solutions more consistently. A parametric study was carried out, and the results included. They show significant variation in the optimal topology in terms of pitch and frame spacing for a range of typical column heights. They also show that the optimized design achieved large savings based on the cost of the main structural elements; the inclusion of knee braces at the eaves yield further savings in cost, that are significant.
Resumo:
Modern control methods like optimal control and model predictive control (MPC) provide a framework for simultaneous regulation of the tracking performance and limiting the control energy, thus have been widely deployed in industrial applications. Yet, due to its simplicity and robustness, the conventional P (Proportional) and PI (Proportional–Integral) control are still the most common methods used in many engineering systems, such as electric power systems, automotive, and Heating, Ventilation and Air Conditioning (HVAC) for buildings, where energy efficiency and energy saving are the critical issues to be addressed. Yet, little has been done so far to explore the effect of its parameter tuning on both the system performance and control energy consumption, and how these two objectives are correlated within the P and PI control framework. In this paper, the P and PI controllers are designed with a simultaneous consideration of these two aspects. Two case studies are investigated in detail, including the control of Voltage Source Converters (VSCs) for transmitting offshore wind power to onshore AC grid through High Voltage DC links, and the control of HVAC systems. Results reveal that there exists a better trade-off between the tracking performance and the control energy through a proper choice of the P and PI controller parameters.
Resumo:
This paper investigates the feasibility of using an instrumented vehicle to detect bridge dynamic parameters, such as natural frequency and structural damping, in a scaled laboratory experiment. In the experiment, a scaled vehicle model crosses a steel girder which has been adopted as the bridge model. The bridge model also includes a scaled road surface profile. The effects of varying vehicle model mass and speed are investigated. The damping of the girder is also varied. The bridge frequency and changes in damping are detected in the vehicle acceleration response in the presence of a rough road surface profile.
Resumo:
Esta tese apresenta um estudo sobre otimização económica de parques eólicos, com o objetivo de obter um algoritmo para otimização económica de parques eólicos através do custo da energia produzida. No estudo utilizou-se uma abordagem multidisciplinar. Inicialmente, apresentam-se as principais tecnologias e diferentes arquiteturas utilizadas nos parques eólicos. Bem como esquemas de funcionamento e gestão dos parques. São identificadas variáveis necessárias e apresenta-se um modelo dimensionamento para cálculo dos custos da energia produzida, tendo-se dado ênfase às instalações onshore e ligados a rede elétrica de distribuição. É feita uma análise rigorosa das características das topologias dos aerogeradores disponíveis no mercado, e simula-se o funcionamento de um parque eólico para testar a validade dos modelos desenvolvidos. Também é implementado um algoritmo para a obtenção de uma resposta otimizada para o ciclo de vida económico do parque eólico em estudo. A abordagem proposta envolve algoritmos para otimização do custo de produção com multiplas funções objetivas com base na descrição matemática da produção de eletricidade. Foram desenvolvidos modelos de otimização linear, que estabelece a ligação entre o custo económico e a produção de eletricidade, tendo em conta ainda as emissões de CO2 em instrumentos de política energética para energia eólica. São propostas expressões para o cálculo do custo de energia com variáveis não convencionais, nomeadamente, para a produção variável do parque eólico, fator de funcionamento e coeficiente de eficiência geral do sistema. Para as duas últimas, também é analisado o impacto da distribuição do vento predominante no sistema de conversão de energia eólica. Verifica-se que os resultados obtidos pelos algoritmos propostos são similares às obtidas por demais métodos numéricos já publicados na comunidade científica, e que o algoritmo de otimização económica sofre influência significativa dos valores obtidos dos coeficientes em questão. Finalmente, é demonstrado que o algoritmo proposto (LCOEwso) é útil para o dimensionamento e cálculo dos custos de capital e O&M dos parques eólicos com informação incompleta ou em fase de projeto. Nesse sentido, o contributo desta tese vem ser desenvolver uma ferramenta de apoio à tomada de decisão de um gestor, investidor ou ainda agente público em fomentar a implantação de um parque eólico.
Resumo:
Dissertação mest., Biologia Marinha, Universidade do Algarve, 2008
Resumo:
Easiness with which the political circles talk about withdrawal from the European Union is rather surprising and proves that the legal parameters of an EU exit are not treated seriously enough. In theoretical terms Article 50 TEU allows for a unilateral exit as well as for a consensual divorce. Arguably, the first is an interesting abstract proposition, which, however, in practical terms seems to be an unworkable solution. Hence, the only realistic option is a proper divorce based on a withdrawal agreement. As per Article 50 TEU, it would be negotiated by the European Union with a departing country and should cover the terms of withdrawal and “take account of future relations” between the EU and the divorcee. It is submitted that in order to avoid a legal vacuum, this agreement should not only “take account of future relations” but actually deal with them thoroughly. This will make the negotiations difficult and, most likely, time consuming. One also has to envisage a scenario whereby a country leaving the European Union would join EFTA and become a EFTA-EU Member State of the European Economic Area. Should that happen the scope of a EU withdrawal agreement would be limited to the terms of exit, while future relations between the divorcee and the European Union would be mainly covered by the EEA Agreement. This chapter unlocks the mechanics of Article 50 TEU and the withdrawal procedure it provides for. It covers the issues that should be attended to by the negotiators and provides an overview of dossiers that are likely be covered in a withdrawal agreement.
Resumo:
We have developed a new method for single-drop microextraction (SDME) for the preconcentration of organochlorine pesticides (OCP) from complex matrices. It is based on the use of a silicone ring at the tip of the syringe. A 5 μL drop of n-hexane is applied to an aqueous extract containing the OCP and found to be adequate to preconcentrate the OCPs prior to analysis by GC in combination with tandem mass spectrometry. Fourteen OCP were determined using this technique in combination with programmable temperature vaporization. It is shown to have many advantages over traditional split/splitless injection. The effects of kind of organic solvent, exposure time, agitation and organic drop volume were optimized. Relative recoveries range from 59 to 117 %, with repeatabilities of <15 % (coefficient of variation) were achieved. The limits of detection range from 0.002 to 0.150 μg kg−1. The method was applied to the preconcentration of OCPs in fresh strawberry, strawberry jam, and soil.
Resumo:
The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.