919 resultados para operant conditioning
Resumo:
Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.
Resumo:
T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16). The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15), and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9). The 8-mV shift in the activation mid-point was statistically significant (P < 0.05). The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1) and a1I (CaV3.3) T-type Ca2+ channel mRNA transcripts.
Resumo:
The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.
Resumo:
Several methods have been described to measure intraocular pressure (IOP) in clinical and research situations. However, the measurement of time varying IOP with high accuracy, mainly in situations that alter corneal properties, has not been reported until now. The present report describes a computerized system capable of recording the transitory variability of IOP, which is sufficiently sensitive to reliably measure ocular pulse peak-to-peak values. We also describe its characteristics and discuss its applicability to research and clinical studies. The device consists of a pressure transducer, a signal conditioning unit and an analog-to-digital converter coupled to a video acquisition board. A modified Cairns trabeculectomy was performed in 9 Oryctolagus cuniculus rabbits to obtain changes in IOP decay parameters and to evaluate the utility and sensitivity of the recording system. The device was effective for the study of kinetic parameters of IOP, such as decay pattern and ocular pulse waves due to cardiac and respiratory cycle rhythm. In addition, there was a significant increase of IOP versus time curve derivative when pre- and post-trabeculectomy recordings were compared. The present procedure excludes corneal thickness and error related to individual operator ability. Clinical complications due to saline infusion and pressure overload were not observed during biomicroscopic evaluation. Among the disadvantages of the procedure are the requirement of anesthesia and the use in acute recordings rather than chronic protocols. Finally, the method described may provide a reliable alternative for the study of ocular pressure dynamic alterations in man and may facilitate the investigation of the pathogenesis of glaucoma.
Resumo:
We transplanted 47 patients with Fanconi anemia using an alternative source of hematopoietic cells. The patients were assigned to the following groups: group 1, unrelated bone marrow (N = 15); group 2, unrelated cord blood (N = 17), and group 3, related non-sibling bone marrow (N = 15). Twenty-four patients (51%) had complete engraftment, which was not influenced by gender (P = 0.87), age (P = 0.45), dose of cyclophosphamide (P = 0.80), nucleated cell dose infused (P = 0.60), or use of anti-T serotherapy (P = 0.20). Favorable factors for superior engraftment were full HLA compatibility (independent of the source of cells; P = 0.007) and use of a fludarabine-based conditioning regimen (P = 0.046). Unfavorable factors were > or = 25 transfusions pre-transplant (P = 0.011) and degree of HLA disparity (P = 0.007). Intensity of mucositis (P = 0.50) and use of androgen prior to transplant had no influence on survival (P = 0.80). Acute graft-versus-host disease (GVHD) grade II-IV and chronic GVHD were diagnosed in 47 and 23% of available patients, respectively, and infections prevailed as the main cause of death, associated or not with GVHD. Eighteen patients are alive, the Kaplan-Meyer overall survival is 38% at ~8 years, and the best results were obtained with related non-sibling bone marrow patients. Three recommendations emerged from the present study: fludarabine as part of conditioning, transplant in patients with <25 transfusions and avoidance of HLA disparity. In addition, an extended family search (even when consanguinity is not present) seeking for a related non-sibling donor is highly recommended.
Resumo:
The aim of the present study was to determine the effect of the histaminergic precursor L-histidine and the H3 receptor antagonist thioperamide on the learning process of zebrafish submitted or not to confinement stress. On each of the 5 consecutive days of experiment (D1, D2, D3, D4, D5), animals had to associate an interruption of the aquarium air supply with food offering. Non-stressed zebrafish received an intraperitoneal injection of 100 mg/kg L-histidine, 10 mg/kg thioperamide or saline after training. Stressed animals received drug treatment and then were submitted to confinement stress for 1 h before the learning procedure. Time to approach the feeder was measured (in seconds) and was considered to be indicative of learning. A decrease in time to approach the feeder was observed in the saline-treated group (D1 = 141.92 ± 13.57; D3 = 55 ± 13.54), indicating learning. A delay in learning of stressed animals treated with saline was observed (D1 = 217.5 ± 25.66). L-histidine facilitated learning in stressed (D1 = 118.68 ± 13.9; D2 = 45.88 ± 8.2) and non-stressed (D1 = 151.11 ± 19.20; D5 = 62 ± 14.68) animals. Thioperamide inhibited learning in non-stressed (D1 = 110.38 ± 9.49; D4 = 58.79 ± 16.83) and stressed animals (D1 = 167.3 ± 26.39; D5 = 172.15 ± 27.35). L-histidine prevented the increase in blood glucose after one session of confinement (L-histidine = 65.88 ± 4.50; control = 53 ± 3.50 mg/dL). These results suggest that the histaminergic system enhances learning and modulates stress responses in zebrafish.
Resumo:
Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 ± 4.3 to 6.5 ± 0.3%) and apoptosis (23.5 ± 4.3 to 6.5 ± 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 ± 0.05 to 0.368 ± 0.073 µg/mg protein) and endothelin-1 (1.88 ± 0.47 to 2.75 ± 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared to G/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed after preconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.
Resumo:
The aim of this study was to test the hypothesis of differences in performance including differences in ST-T wave changes between healthy men and women submitted to an exercise stress test. Two hundred (45.4%) men and 241 (54.6%) women (mean age: 38.7 ± 11.0 years) were submitted to an exercise stress test. Physiologic and electrocardiographic variables were compared by the Student t-test and the chi-square test. To test the hypothesis of differences in ST-segment changes, data were ranked with functional models based on weighted least squares. To evaluate the influence of gender and age on the diagnosis of ST-segment abnormality, a logistic model was adjusted; P < 0.05 was considered to be significant. Rate-pressure product, duration of exercise and estimated functional capacity were higher in men (P < 0.05). Sixteen (6.7%) women and 9 (4.5%) men demonstrated ST-segment upslope ≥0.15 mV or downslope ≥0.10 mV; the difference was not statistically significant. Age increase of one year added 4% to the chance of upsloping of segment ST ≥0.15 mV or downsloping of segment ST ≥0.1 mV (P = 0.03; risk ratio = 1.040, 95% confidence interval (CI) = 1.002-1.080). Heart rate recovery was higher in women (P < 0.05). The chance of women showing an increase of systolic blood pressure ≤30 mmHg was 85% higher (P = 0.01; risk ratio = 1.85, 95%CI = 1.1-3.05). No significant difference in the frequency of ST-T wave changes was observed between men and women. Other differences may be related to different physical conditioning.
Resumo:
Tolerance to lipopolysaccharide (LPS) occurs when animals or cells exposed to LPS become hyporesponsive to a subsequent challenge with LPS. This mechanism is believed to be involved in the down-regulation of cellular responses observed in septic patients. The aim of this investigation was to evaluate LPS-induced monocyte tolerance of healthy volunteers using whole blood. The detection of intracellular IL-6, bacterial phagocytosis and reactive oxygen species (ROS) was determined by flow cytometry, using anti-IL-6-PE, heat-killed Staphylococcus aureus stained with propidium iodide and 2',7'-dichlorofluorescein diacetate, respectively. Monocytes were gated in whole blood by combining FSC and SSC parameters and CD14-positive staining. The exposure to increasing LPS concentrations resulted in lower intracellular concentration of IL-6 in monocytes after challenge. A similar effect was observed with challenge with MALP-2 (a Toll-like receptor (TLR)2/6 agonist) and killed Pseudomonas aeruginosa and S. aureus, but not with flagellin (a TLR5 agonist). LPS conditioning with 15 ng/mL resulted in a 40% reduction of IL-6 in monocytes. In contrast, phagocytosis of P. aeruginosa and S. aureus and induced ROS generation were preserved or increased in tolerant cells. The phenomenon of tolerance involves a complex regulation in which the production of IL-6 was diminished, whereas the bacterial phagocytosis and production of ROS was preserved. Decreased production of proinflammatory cytokines and preserved or increased production of ROS may be an adaptation to control the deleterious effects of inflammation while preserving antimicrobial activity.
Resumo:
In this study, we evaluated the expression of the Zenk protein within the nucleus taeniae of the pigeon’s amygdala (TnA) after training in a classical aversive conditioning, in order to improve our understanding of its functional role in birds. Thirty-two 18-month-old adult male pigeons (Columba livia), weighing on average 350 g, were trained under different conditions: with tone-shock associations (experimental group; EG); with shock-alone presentations (shock group; SG); with tone-alone presentations (tone group; TG); with exposure to the training chamber without stimulation (context group; CG), and with daily handling (naive group; NG). The number of immunoreactive nuclei was counted in the whole TnA region and is reported as density of Zenk-positive nuclei. This density of Zenk-positive cells in the TnA was significantly greater for the EG, SG and TG than for the CG and NG (P < 0.05). The data indicate an expression of Zenk in the TnA that was driven by experience, supporting the role of this brain area as a critical element for neural processing of aversive stimuli as well as meaningful novel stimuli.
Resumo:
Classical Pavlovian fear conditioning to painful stimuli has provided the generally accepted view of a core system centered in the central amygdala to organize fear responses. Ethologically based models using other sources of threat likely to be expected in a natural environment, such as predators or aggressive dominant conspecifics, have challenged this concept of a unitary core circuit for fear processing. We discuss here what the ethologically based models have told us about the neural systems organizing fear responses. We explored the concept that parallel paths process different classes of threats, and that these different paths influence distinct regions in the periaqueductal gray - a critical element for the organization of all kinds of fear responses. Despite this parallel processing of different kinds of threats, we have discussed an interesting emerging view that common cortical-hippocampal-amygdalar paths seem to be engaged in fear conditioning to painful stimuli, to predators and, perhaps, to aggressive dominant conspecifics as well. Overall, the aim of this review is to bring into focus a more global and comprehensive view of the systems organizing fear responses.
Resumo:
Impaired cholinergic neurotransmission can affect memory formation and influence sleep-wake cycles (SWC). In the present study, we describe the SWC in mice with a deficient vesicular acetylcholine transporter (VAChT) system, previously characterized as presenting reduced acetylcholine release and cognitive and behavioral dysfunctions. Continuous, chronic ECoG and EMG recordings were used to evaluate the SWC pattern during light and dark phases in VAChT knockdown heterozygous (VAChT-KDHET, n=7) and wild-type (WT, n=7) mice. SWC were evaluated for sleep efficiency, total amount and mean duration of slow-wave, intermediate and paradoxical sleep, as well as the number of awakenings from sleep. After recording SWC, contextual fear-conditioning tests were used as an acetylcholine-dependent learning paradigm. The results showed that sleep efficiency in VAChT-KDHET animals was similar to that of WT mice, but that the SWC was more fragmented. Fragmentation was characterized by an increase in the number of awakenings, mainly during intermediate sleep. VAChT-KDHET animals performed poorly in the contextual fear-conditioning paradigm (mean freezing time: 34.4±3.1 and 44.5±3.3 s for WT and VAChT-KDHET animals, respectively), which was followed by a 45% reduction in the number of paradoxical sleep episodes after the training session. Taken together, the results show that reduced cholinergic transmission led to sleep fragmentation and learning impairment. We discuss the results on the basis of cholinergic plasticity and its relevance to sleep homeostasis. We suggest that VAChT-KDHET mice could be a useful model to test cholinergic drugs used to treat sleep dysfunction in neurodegenerative disorders.
Resumo:
The 6-minute walk test (6MWT) is a simple field test that is widely used in clinical settings to assess functional exercise capacity. However, studies with healthy subjects are scarce. We hypothesized that the 6MWT might be useful to assess exercise capacity in healthy subjects. The purpose of this study was to evaluate 6MWT intensity in middle-aged and older adults, as well as to develop a simple equation to predict oxygen uptake ( V ˙ O 2 ) from the 6-min walk distance (6MWD). Eighty-six participants, 40 men and 46 women, 40-74 years of age and with a mean body mass index of 28±6 kg/m2, performed the 6MWT according to American Thoracic Society guidelines. Physiological responses were evaluated during the 6MWT using a K4b2 Cosmed telemetry gas analyzer. On a different occasion, the subjects performed ramp protocol cardiopulmonary exercise testing (CPET) on a treadmill. Peak V ˙ O 2 in the 6MWT corresponded to 78±13% of the peak V ˙ O 2 during CPET, and the maximum heart rate corresponded to 80±23% of that obtained in CPET. Peak V ˙ O 2 in CPET was adequately predicted by the 6MWD by a linear regression equation: V ˙ O 2 mL·min-1·kg-1 = -2.863 + (0.0563×6MWDm) (R2=0.76). The 6MWT represents a moderate-to-high intensity activity in middle-aged and older adults and proved to be useful for predicting cardiorespiratory fitness in the present study. Our results suggest that the 6MWT may also be useful in asymptomatic individuals, and its use in walk-based conditioning programs should be encouraged.
Resumo:
Treatments for patients with hematologic malignancies not in remission are limited, but a few clinical studies have investigated the effects of salvaged unrelated cord blood transplantation (CBT). We retrospectively studied 19 patients with acute leukemia, 5 with myelodysplastic syndrome (MDS with refractory anemia with excess blasts [RAEB]), and 2 with non-Hodgkin's lymphoma who received 1 CBT unit ≤2 loci human leukocyte antigen (HLA)-mismatched after undergoing myeloablative conditioning regimens between July 2005 and July 2014. All of them were in non-remission before transplantation. The infused total nucleated cell (TNC) dose was 4.07 (range 2.76-6.02)×107/kg and that of CD34+ stem cells was 2.08 (range 0.99-8.65)×105/kg. All patients were engrafted with neutrophils that exceeded 0.5×109/L on median day +17 (range 14-37 days) and had platelet counts of >20×109/L on median day +35 (range 17-70 days). Sixteen patients (61.5%) experienced pre-engraftment syndrome (PES), and six (23.1%) patients progressed to acute graft-versus-host disease (GVHD). The cumulative incidence rates of II-IV acute GVHD and chronic GVHD were 50% and 26.9%, respectively. After a median follow-up of 27 months (range 5-74), 14 patients survived and 3 relapsed. The estimated 2-year overall survival (OS), disease-free survival (DFS), and non-relapse mortality (NRM) rates were 50.5%, 40.3%, and 35.2%, respectively. Salvaged CBT might be a promising modality for treating hematologic malignancies, even in patients with a high leukemia burden.
Resumo:
This study aimed to evaluate the effects of carvedilol treatment and a regimen of supervised aerobic exercise training on quality of life and other clinical, echocardiographic, and biochemical variables in a group of client-owned dogs with chronic mitral valve disease (CMVD). Ten healthy dogs (control) and 36 CMVD dogs were studied, with the latter group divided into 3 subgroups. In addition to conventional treatment (benazepril, 0.3-0.5 mg/kg once a day, and digoxin, 0.0055 mg/kg twice daily), 13 dogs received exercise training (subgroup I; 10.3±2.1 years), 10 dogs received carvedilol (0.3 mg/kg twice daily) and exercise training (subgroup II; 10.8±1.7 years), and 13 dogs received only carvedilol (subgroup III; 10.9±2.1 years). All drugs were administered orally. Clinical, laboratory, and Doppler echocardiographic variables were evaluated at baseline and after 3 and 6 months. Exercise training was conducted from months 3-6. The mean speed rate during training increased for both subgroups I and II (ANOVA, P>0.001), indicating improvement in physical conditioning at the end of the exercise period. Quality of life and functional class was improved for all subgroups at the end of the study. The N-terminal pro-brain natriuretic peptide (NT-proBNP) level increased in subgroup I from baseline to 3 months, but remained stable after training introduction (from 3 to 6 months). For subgroups II and III, NT-proBNP levels remained stable during the entire study. No difference was observed for the other variables between the three evaluation periods. The combination of carvedilol or exercise training with conventional treatment in CMVD dogs led to improvements in quality of life and functional class. Therefore, light walking in CMVD dogs must be encouraged.