886 resultados para numerical reconstruction
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.
Resumo:
This study examines the efficacy of published δ18O data from the calcite of Late Miocene surface dwelling planktonic foraminifer shells, for sea surface temperature estimates for the pre-Quaternary. The data are from 33 Late Miocene (Messinian) marine sites from a modern latitudinal gradient of 64°N to 48°S. They give estimates of SSTs in the tropics/subtropics (to 30°N and S) that are mostly cooler than present. Possible causes of this temperature discrepancy are ecological factors (e.g. calcification of shells at levels below the ocean mixed layer), taphonomic effects (e.g. diagenesis or dissolution), inaccurate estimation of Late Miocene seawater oxygen isotope composition, or a real Late Miocene cool climate. The scale of apparent cooling in the tropics suggests that the SST signal of the foraminifer calcite has been reset, at least in part, by early diagenetic calcite with higher δ18O, formed in the foraminifer shells in cool sea bottom pore waters, probably coupled with the effects of calcite formed below the mixed layer during the life of the foraminifera. This hypothesis is supported by the markedly cooler SST estimates from low latitudes—in some cases more than 9 °C cooler than present—where the gradients of temperature and the δ18O composition of seawater between sea surface and sea bottom are most marked, and where ocean surface stratification is high. At higher latitudes, particularly N and S of 30°, the temperature signal is still cooler, though maximum temperature estimates overlap with modern SSTs N and S of 40°. Comparison of SST estimates for the Late Miocene from alkenone unsaturation analysis from the eastern tropical Atlantic at Ocean Drilling Program (ODP) Site 958—which suggest a warmer sea surface by 2–4 °C, with estimates from oxygen isotopes at Deep Sea Drilling Project (DSDP) Site 366 and ODP Site 959, indicating cooler than present SSTs, also suggest a significant impact on the δ18O signal. Nevertheless, much of the original SST variation is clearly preserved in the primary calcite formed in the mixed layer, and records secular and temporal oceanographic changes at the sea surface, such as movement of the Antarctic Polar Front in the Southern Ocean. Cooler SSTs in the tropics and sub-tropics are also consistent with the Late Miocene latitude reduction in the coral reef belt and with interrupted reef growth on the Queensland Plateau of eastern Australia, though it is not possible to quantify absolute SSTs with the existing oxygen isotope data. Reconstruction of an accurate global SST dataset for Neogene time-slices from the existing published DSDP/ODP isotope data, for use in general circulation models, may require a detailed re-assessment of taphonomy at many sites.
Resumo:
This paper describes a novel numerical algorithm for simulating the evolution of fine-scale conservative fields in layer-wise two-dimensional flows, the most important examples of which are the earth's atmosphere and oceans. the algorithm combines two radically different algorithms, one Lagrangian and the other Eulerian, to achieve an unexpected gain in computational efficiency. The algorithm is demonstrated for multi-layer quasi-geostrophic flow, and results are presented for a simulation of a tilted stratospheric polar vortex and of nearly-inviscid quasi-geostrophic turbulence. the turbulence results contradict previous arguments and simulation results that have suggested an ultimate two-dimensional, vertically-coherent character of the flow. Ongoing extensions of the algorithm to the generally ageostrophic flows characteristic of planetary fluid dynamics are outlined.
Resumo:
The goal of this work is the numerical realization of the probe method suggested by Ikehata for the detection of an obstacle D in inverse scattering. The main idea of the method is to use probes in the form of point source (., z) with source point z to define an indicator function (I) over cap (z) which can be reconstructed from Cauchy data or far. eld data. The indicator function boolean AND (I) over cap (z) can be shown to blow off when the source point z tends to the boundary aD, and this behavior can be used to find D. To study the feasibility of the probe method we will use two equivalent formulations of the indicator function. We will carry out the numerical realization of the functional and show reconstructions of a sound-soft obstacle.
Resumo:
We use the point-source method (PSM) to reconstruct a scattered field from its associated far field pattern. The reconstruction scheme is described and numerical results are presented for three-dimensional acoustic and electromagnetic scattering problems. We give new proofs of the algorithms, based on the Green and Stratton-Chu formulae, which are more general than with the former use of the reciprocity relation. This allows us to handle the case of limited aperture data and arbitrary incident fields. Both for 3D acoustics and electromagnetics, numerical reconstructions of the field for different settings and with noisy data are shown. For shape reconstruction in acoustics, we develop an appropriate strategy to identify areas with good reconstruction quality and combine different such regions into one joint function. Then, we show how shapes of unknown sound-soft scatterers are found as level curves of the total reconstructed field.