941 resultados para noninvasive brain stimulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and cellular morphology of serotonergic neurons in the brain of two species of monotremes are described. Three clusters of serotonergic neurons were found: a hypothalamic cluster, a cluster in the rostral brainstem and a cluster in the caudal brainstem. Those in the hypothalamus consisted of two groups, the periventricular hypothalamic organ and the infundibular recess, that were intimately associated with the ependymal wall of the third ventricle. Within the rostral brainstem cluster, three distinct divisions were found: the dorsal raphe nucleus (with four subdivisions), the median raphe nucleus and the cells of the supralemniscal region. The dorsal raphe was within and adjacent to the periaqueductal gray matter, the median raphe was associated with the midline ventral to the dorsal raphe, and the cells of the supralemniscal region were in the tegmentum lateral to the median raphe and ventral to the dorsal raphe. The caudal cluster consisted of three divisions: the raphe obscurus nucleus, the raphe pallidus nucleus and the raphe magnus nucleus. The raphe obscurus nucleus was associated with the dorsal midline at the caudal-most part of the medulla oblongata. The raphe pallidus nucleus was found at the ventral midline of the medulla around the inferior olive. Raphe magnus was associated with the midline of the medulla and was found rostral to both the raphe obscurus and raphe pallidus. The results of our study are compared in an evolutionary context with those reported for other mammals and reptiles. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study employs choline acetyltransferase (ChAT) immunohistochemistry to identify the cholinergic neuronal population in the central nervous system of the monotremes. Two of the three extant species of monotreme were studied: the platypus (Omithorhynchus anatinus) and the short-beaked echidna (Tachyglossus aculeatus). The distribution of cholinergic cells in the brain of these two species was virtually identical. Distinct groups of cholinergic cells were observed in the striatum, basal forebrain, habenula, pontomesencephalon, cranial nerve motor nuclei, and spinal cord. In contrast to other tetrapods studied with this technique, we failed to find evidence for cholinergic cells in the hypothalamus, the parabigeminal nucleus (or nucleus isthmus), or the cerebral cortex. The lack of hypothalamic cholinergic neurons creates a hiatus in the continuous antero-posterior aggregation of cholinergic neurons seen in other tetrapods. This hiatus might be functionally related to the phenomenology of monotreme sleep and to the ontogeny of sleep in mammals, as juvenile placental mammals exhibit a similar combination of sleep elements to that found in adult monotremes. Copyright (C) 2002 S. Karger AG, Basel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed immunocytochemistry on rat brains using a highly specific antiserum directed against the originally described form of the glutamate transporter GLT-1 (referred to hereafter as GLT-1alpha), and another against a C-terminal splice variant of this protein, GLT-1B. Both forms of GLT-1 were abundant in rat brain, especially in regions such as the hippocampus and cerebral cortex, and macroscopic examination of sections suggested that both forms were generally regionally coexistent. However, disparities were evident; GLT-1alpha was present in the intermediate lobe of the pituitary gland, whereas GLT-1B was absent. Similar marked disparities were also noted in the external capsule, where GLT1A labeling was abundant but GLT-1B was only occasionally encountered. Conversely, GLT-1B was more extensively distributed, relative to GLT-1alpha, in areas such as the deep cerebellar nuclei. In most regions, such as the olfactory bulbs, both splice variants were present but differences were evident in their distribution. In cerebral cortex, patches were evident where GLT-1B was absent, whereas no such patches were evident for GLT-1alpha. At high resolution, other discrepancies were evident; double-labeling of areas such as hippocampus indicated that the. two splice variants may either be differentially expressed by closely apposed glial elements or that the two splice variants may be differentially targeted to distinct membrane domains of individual glial cells. (C) 2002 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nervous system contains an abundance of taurine, a neuroactive sulfonic acid. Antibodies were generated against two cloned high-affinity taurine transporters, referred to in this study as TAUT-1 and TAUT-2. The distribution of such was compared with the distribution of taurine in the rat brain, pituitary, and retina. The cellular pattern of [H-3] taurine uptake in brain slices, pituitary slices, and retinas was examined by autoradiography. TAUT-2 was predominantly associated with glial cells, including the Bergmann glial cells of the cerebellum and astrocytes in brain areas such as hippocampus. Low-level labeling for TAUT-2 was also observed in some neurones such as CA1 pyramidal cells. TAUT-1 distribution was more limited; in the posterior pituitary TAUT-1 was associated with the pituicytes but was absent from glial cells in the intermediate and anterior lobes. Conversely, in the brain TAUT-1 was associated with cerebellar Purkinje cells and, in the retina, with photoreceptors and bipolar cells. Our data suggest that intracellular taurine levels in glial cells and neurons may be regulated in part by specific high-affinity taurine transporters. The heterogeneous distribution of taurine and its transporters in the brain does not reconcile well with the possibility that taurine acts solely as a ubiquitous osmolyte in nervous tissues. (C) 2002 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: (1) To establish an incidence figure for dysphagia in a population of pediatric traumatic brain injury (TBI) cases; (2) to provide descriptive data on the admitting characteristics, patterns of resolution, and outcomes of children with and without dysphagia after TBI; and (3) to identify any factors present at admission that may predict dysphagia. Participants: A total of 1, 145 children consecutively admitted to an acute care setting for traumatic brain injury between July 1995 and July 2000. Main outcome measure: Medical parameters relating to dysphagia based on medical chart review. Results: (1) Dysphagia incidence figure of 5.3% across all pediatric head injury admissions. Incidence figures of 68% for severe TBI, 15% for moderate TBI, and only 1% for mild brain injury. (2) Statistically significant differences were found between the dysphagic and nondysphagic subgroups on the variables of length of stay, length of ventilation, Glasgow Coma Scale (GCS), computed tomography classification, duration of speech pathology intervention, supplemental feeding duration, duration until initiation of oral intake (DIOF), duration to total oral intake (DTOF), and period of time from the initiation of intake until achievement of total oral intake (DI-TOF). (3) Significant predictive factors for dysphagia included GCS < 8.5 and a ventilation period in excess of 1.5 days. Conclusion: The provision of incidence data and predictive factors for dysphagia will enable clinicians in acute care settings to allocate resources necessary to deal with the predicted number of dysphagia cases in a pediatric population, and assist in predicting patients who are at risk for dysphagia following TBI. Early detection of patients with swallowing dysfunction will be aided by these data, in turn helping to facilitate effective medical and speech pathology intervention via assisting the reduction of medical complications such as aspiration pneumonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Impaired self-awareness is a common problem following traumatic brain injury. Without adequate self-awareness, a person's motivation to participate in rehabilitation may be limited, which in turn can have an adverse effect on his or her functional outcome. For this reason, it is important that brain injury rehabilitation professionals, including occupational therapists, both understand this phenomenon and use assessment and treatment approaches aimed at improving clients' self-awareness. This article provides an overview of self-awareness, reviewing the distinction between intellectual and online awareness. The current role of occupational therapy in the assessment of self-awareness is highlighted and the guidelines for new assessments of self-awareness suitable for use in occupational therapy are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article contains the proceedings of a symposium at the 2002 RSA/ISBRA Meeting in San Francisco, organized and chaired by Clive Harper and co-chaired by Izuru Matsumoto. The presentations were (1) Introduction, by Clive Harper; (2) The quality of tissue-a critical issue, by Therese Garrick; (3) The first systematic brain tissue donor program in Japan, by Izuru Matsumoto; (4) Brain scans after death-really! by Adolf Pfefferbaum, Elfar Adalsteinsson, and Edith Sullivan; (5) Capture that (genial) expression, by Joanne Lewohl and Peter Dodd; and (6) Neurochemical/pharmacological studies: experimental design and limitations, by Roger Butterworth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N-methyl-D-aspartate (NMDA)-selective subtype of ionotropic glutamate receptor is of importance in neuronal differentiation and synapse consolidation, activity-dependent forms of synaptic plasticity, and excitatory amino acid-mediated neuronal toxicity [Neurosci. Res. Program, Bull. 19 (1981) 1; Lab. Invest. 68 (1993) 372]. NMDA receptors exist in vivo as tetrameric or pentameric complexes comprising proteins from two families of homologous subunits, designated NR1 and NR2(A-D) [Biochem. Biophys. Res. Commun. 185 (1992) 826]. The gene coding for the human NR1 subunit (hNR1) is composed of 21 exons, three of which (4, 20 and 21) can be differentially spliced to generate a total of eight distinct subunit variants. We detail here a competitive RT-PCR (cRT-PCR) protocol to quantify endogenous levels of hNR1 splice variants in autopsied human brain. Quantitation of each hNR1 splice variant is performed using standard curve methodology in which a known amount of synthetic ribonucleic acid competitor (internal standard) is co-amplified against total RNA. This method can be used for the quantitation of hNR1 mRNA levels in response to acute or chronic disease states, in particular in the glutamatergic-associated neuronal loss observed in Alzheimer's disease [J. Neurochem. 78 (2001) 175]. Furthermore, alterations in hNR1 mRNA expression may be reflected at the translational level, resulting in functional changes in the NMDA receptor. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a competitive RT-PCR assay, adapted from Lewohl et al. [Brain Res. Brain Res. Protoc. 1 (1997) 347]. for the quantitation of GABA, receptor beta isoforms in human brain using an internal standard that shares high sequence homology to the targets. The internal standard is identical to the beta(1) sequence except for a 61 bp deletion and the incorporation of a Hind III restriction enzyme site. Unlike traditional competitive RT-PCR, which requires a range of internal standard concentrations to be titrated against a constant amount of unknown, this method relies on a standard curve for quantitation of each sample and thus permits increased sample throughput. This method is suitable for the quantitation of beta(1), beta(2) and beta(3) isoforms of the GABA(A) receptor in human alcoholic and control brain. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article represents the proceedings of a symposium at the 2002 joint RSA/ISBRA Conference in San Francisco, California. The organizer was Paula L. Hoffman and the co-chairs were Paula L. Hoffman and Michael Miles. The presentations were (1) Introduction and overview of the use of DNA microarrays, by Michael Miles; (2) DNA microarray analysis of gene expression in brains of P and NP rats, by Howard J. Edenberg; (3) Gene expression patterns in brain regions of AA and ANA rats, by Wolfgang Sommer; (4) Patterns of gene expression in brains of selected lines of mice that differ in ethanol tolerance, by Boris Tabakoff; (5) Gene expression profiling related to initial sensitivity and tolerance in gamma-protein kinase C mutants, by Jeanne Wehner; and (6) Gene expression patterns in human alcoholic brain: from microarrays to protein profiles, by Joanne Lewohl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of human brain tissue obtained at autopsy for neurochemical, pharmacological and physiological analyses is reviewed. RNA and protein samples have been found suitable for expression profiling by techniques that include RT-PCR, cDNA microarrays, western blotting, immunohistochemistry and proteomics. The rapid development of molecular biological techniques has increased the impetus for this work to be applied to studies of brain disease. It has been shown that most nucleic acids and proteins are reasonably stable post-mortem. However, their abundance and integrity can exhibit marked intra- and intercase variability, making comparisons between case-groups difficult. Variability can reveal important functional and biochemical information. The correct interpretation of neurochemical data must take into account such factors as age, gender, ethnicity, medicative history, immediate ante-mortem status, agonal state and post-mortem and post-autopsy intervals. Here we consider issues associated with the sampling of DNA, RNA and proteins using human autopsy brain tissue in relation to various ante- and post-mortem factors. We conclude that valid and practical measures of a variety of parameters may be made in human brain tissue, provided that specific factors are controlled.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biogenic amines and their receptors regulate and modulate many physiological and behavioural processes in animals. In vertebrates, octopamine is only found in trace amounts and its function as a true neurotransmitter is unclear. In protostomes, however, octopamine can act as neurotransmitter, neuromodulator and neurohormone. In the honeybee, octopamine acts as a neuromodulator and is involved in learning and memory formation. The identification of potential octopamine receptors is decisive for an understanding of the cellular pathways involved in mediating the effects of octopamine. Here we report the cloning and functional characterization of the first octopamine receptor from the honeybee, Apis mellifera . The gene was isolated from a brain-specific cDNA library. It encodes a protein most closely related to octopamine receptors from Drosophila melanogaster and Lymnea stagnalis . Signalling properties of the cloned receptor were studied in transiently transfected human embryonic kidney (HEK) 293 cells. Nanomolar to micromolar concentrations of octopamine induced oscillatory increases in the intracellular Ca2+ concentration. In contrast to octopamine, tyramine only elicited Ca2+ responses at micromolar concentrations. The gene is abundantly expressed in many somata of the honeybee brain, suggesting that this octopamine receptor is involved in the processing of sensory inputs, antennal motor outputs and higher-order brain functions.