821 resultados para node classification
Resumo:
This paper reports the current state of work to simplify our previous model-based methods for visual tracking of vehicles for use in a real-time system intended to provide continuous monitoring and classification of traffic from a fixed camera on a busy multi-lane motorway. The main constraints of the system design were: (i) all low level processing to be carried out by low-cost auxiliary hardware, (ii) all 3-D reasoning to be carried out automatically off-line, at set-up time. The system developed uses three main stages: (i) pose and model hypothesis using 1-D templates, (ii) hypothesis tracking, and (iii) hypothesis verification, using 2-D templates. Stages (i) & (iii) have radically different computing performance and computational costs, and need to be carefully balanced for efficiency. Together, they provide an effective way to locate, track and classify vehicles.
Resumo:
Site-specific management requires accurate knowledge of the spatial variation in a range of soil properties within fields. This involves considerable sampling effort, which is costly. Ancillary data, such as crop yield, elevation and apparent electrical conductivity (ECa) of the soil, can provide insight into the spatial variation of some soil properties. A multivariate classification with spatial constraint imposed by the variogram was used to classify data from two arable crop fields. The yield data comprised 5 years of crop yield, and the ancillary data 3 years of yield data, elevation and ECa. Information on soil chemical and physical properties was provided by intensive surveys of the soil. Multivariate variograms computed from these data were used to constrain sites spatially within classes to increase their contiguity. The constrained classifications resulted in coherent classes, and those based on the ancillary data were similar to those from the soil properties. The ancillary data seemed to identify areas in the field where the soil is reasonably homogeneous. The results of targeted sampling showed that these classes could be used as a basis for management and to guide future sampling of the soil.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.
Resumo:
We investigate the performance of phylogenetic mixture models in reducing a well-known and pervasive artifact of phylogenetic inference known as the node-density effect, comparing them to partitioned analyses of the same data. The node-density effect refers to the tendency for the amount of evolutionary change in longer branches of phylogenies to be underestimated compared to that in regions of the tree where there are more nodes and thus branches are typically shorter. Mixture models allow more than one model of sequence evolution to describe the sites in an alignment without prior knowledge of the evolutionary processes that characterize the data or how they correspond to different sites. If multiple evolutionary patterns are common in sequence evolution, mixture models may be capable of reducing node-density effects by characterizing the evolutionary processes more accurately. In gene-sequence alignments simulated to have heterogeneous patterns of evolution, we find that mixture models can reduce node-density effects to negligible levels or remove them altogether, performing as well as partitioned analyses based on the known simulated patterns. The mixture models achieve this without knowledge of the patterns that generated the data and even in some cases without specifying the full or true model of sequence evolution known to underlie the data. The latter result is especially important in real applications, as the true model of evolution is seldom known. We find the same patterns of results for two real data sets with evidence of complex patterns of sequence evolution: mixture models substantially reduced node-density effects and returned better likelihoods compared to partitioning models specifically fitted to these data. We suggest that the presence of more than one pattern of evolution in the data is a common source of error in phylogenetic inference and that mixture models can often detect these patterns even without prior knowledge of their presence in the data. Routine use of mixture models alongside other approaches to phylogenetic inference may often reveal hidden or unexpected patterns of sequence evolution and can improve phylogenetic inference.
Resumo:
The node-density effect is an artifact of phylogeny reconstruction that can cause branch lengths to be underestimated in areas of the tree with fewer taxa. Webster, Payne, and Pagel (2003, Science 301:478) introduced a statistical procedure (the "delta" test) to detect this artifact, and here we report the results of computer simulations that examine the test's performance. In a sample of 50,000 random data sets, we find that the delta test detects the artifact in 94.4% of cases in which it is present. When the artifact is not present (n = 10,000 simulated data sets) the test showed a type I error rate of approximately 1.69%, incorrectly reporting the artifact in 169 data sets. Three measures of tree shape or "balance" failed to predict the size of the node-density effect. This may reflect the relative homogeneity of our randomly generated topologies, but emphasizes that nearly any topology can suffer from the artifact, the effect not being confined only to highly unevenly sampled or otherwise imbalanced trees. The ability to screen phylogenies for the node-density artifact is important for phylogenetic inference and for researchers using phylogenetic trees to infer evolutionary processes, including their use in molecular clock dating. [Delta test; molecular clock; molecular evolution; node-density effect; phylogenetic reconstruction; speciation; simulation.]
Resumo:
In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.