877 resultados para new method
Resumo:
La liste des domaines touchés par l’apprentissage machine s’allonge rapidement. Au fur et à mesure que la quantité de données disponibles augmente, le développement d’algorithmes d’apprentissage de plus en plus puissants est crucial. Ce mémoire est constitué de trois parties: d’abord un survol des concepts de bases de l’apprentissage automatique et les détails nécessaires pour l’entraînement de réseaux de neurones, modèles qui se livrent bien à des architectures profondes. Ensuite, le premier article présente une application de l’apprentissage machine aux jeux vidéos, puis une méthode de mesure performance pour ceux-ci en tant que politique de décision. Finalement, le deuxième article présente des résultats théoriques concernant l’entraînement d’architectures profondes nonsupervisées. Les jeux vidéos sont un domaine particulièrement fertile pour l’apprentissage automatique: il estf facile d’accumuler d’importantes quantités de données, et les applications ne manquent pas. La formation d’équipes selon un critère donné est une tˆache commune pour les jeux en lignes. Le premier article compare différents algorithmes d’apprentissage à des réseaux de neurones profonds appliqués à la prédiction de la balance d’un match. Ensuite nous présentons une méthode par simulation pour évaluer les modèles ainsi obtenus utilisés dans le cadre d’une politique de décision en ligne. Dans un deuxième temps nous présentons une nouvelleméthode pour entraîner des modèles génératifs. Des résultats théoriques nous indiquent qu’il est possible d’entraîner par rétropropagation des modèles non-supervisés pouvant générer des échantillons qui suivent la distribution des données. Ceci est un résultat pertinent dans le cadre de la récente littérature scientifique investiguant les propriétés des autoencodeurs comme modèles génératifs. Ces résultats sont supportés avec des expériences qualitatives préliminaires ainsi que quelques résultats quantitatifs.
Resumo:
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants.
Resumo:
Nous proposons une nouvelle méthode pour quantifier la vorticité intracardiaque (vortographie Doppler), basée sur l’imagerie Doppler conventionnelle. Afin de caractériser les vortex, nous utilisons un indice dénommé « Blood Vortex Signature (BVS) » (Signature Tourbillonnaire Sanguine) obtenu par l’application d’un filtre par noyau basé sur la covariance. La validation de l’indice BVS mesuré par vortographie Doppler a été réalisée à partir de champs Doppler issus de simulations et d’expériences in vitro. Des résultats préliminaires obtenus chez des sujets sains et des patients atteints de complications cardiaques sont également présentés dans ce mémoire. Des corrélations significatives ont été observées entre la vorticité estimée par vortographie Doppler et la méthode de référence (in silico: r2 = 0.98, in vitro: r2 = 0.86). Nos résultats suggèrent que la vortographie Doppler est une technique d’échographie cardiaque prometteuse pour quantifier les vortex intracardiaques. Cet outil d’évaluation pourrait être aisément appliqué en routine clinique pour détecter la présence d’une insuffisance ventriculaire et évaluer la fonction diastolique par échocardiographie Doppler.
Resumo:
La duplication est un des évènements évolutifs les plus importants, car elle peut mener à la création de nouvelles fonctions géniques. Durant leur évolution, les génomes sont aussi affectés par des inversions, des translocations (incluant des fusions et fissions de chromosomes), des transpositions et des délétions. L'étude de l'évolution des génomes est importante, notamment pour mieux comprendre les mécanismes biologiques impliqués, les types d'évènements qui sont les plus fréquents et quels étaient les contenus en gènes des espèces ancestrales. Afin d'analyser ces différents aspects de l'évolution des génomes, des algorithmes efficaces doivent être créés pour inférer des génomes ancestraux, des histoires évolutives, des relations d'homologies et pour calculer les distances entre les génomes. Dans cette thèse, quatre projets reliés à l'étude et à l'analyse de l'évolution des génomes sont présentés : 1) Nous proposons deux algorithmes pour résoudre des problèmes reliés à la duplication de génome entier : un qui généralise le problème du genome halving aux pertes de gènes et un qui permet de calculer la double distance avec pertes. 2) Nous présentons une nouvelle méthode pour l'inférence d'histoires évolutives de groupes de gènes orthologues répétés en tandem. 3) Nous proposons une nouvelle approche basée sur la théorie des graphes pour inférer des gènes in-paralogues qui considère simultanément l'information provenant de différentes espèces afin de faire de meilleures prédictions. 4) Nous présentons une étude de l'histoire évolutive des gènes d'ARN de transfert chez 50 souches de Bacillus.
Resumo:
Depuis quelques années, il y a un intérêt de la communauté en dosimétrie d'actualiser les protocoles de dosimétrie des faisceaux larges tels que le TG-51 (AAPM) et le TRS-398 (IAEA) aux champs non standard qui requièrent un facteur de correction additionnel. Or, ces facteurs de correction sont difficiles à déterminer précisément dans un temps acceptable. Pour les petits champs, ces facteurs augmentent rapidement avec la taille de champ tandis que pour les champs d'IMRT, les incertitudes de positionnement du détecteur rendent une correction cas par cas impraticable. Dans cette étude, un critère théorique basé sur la fonction de réponse dosimétrique des détecteurs est développé pour déterminer dans quelles situations les dosimètres peuvent être utilisés sans correction. Les réponses de quatre chambres à ionisation, d'une chambre liquide, d'un détecteur au diamant, d'une diode, d'un détecteur à l'alanine et d'un détecteur à scintillation sont caractérisées à 6 MV et 25 MV. Plusieurs stratégies sont également suggérées pour diminuer/éliminer les facteurs de correction telles que de rapporter la dose absorbée à un volume et de modifier les matériaux non sensibles du détecteur pour pallier l'effet de densité massique. Une nouvelle méthode de compensation de la densité basée sur une fonction de perturbation est présentée. Finalement, les résultats démontrent que le détecteur à scintillation peut mesurer les champs non standard utilisés en clinique avec une correction inférieure à 1%.
Resumo:
L’attrait des compagnies pharmaceutiques pour des structures cycliques possédant des propriétés biologiques intéressantes par les compagnies pharmaceutiques a orienté les projets décrits dans ce mémoire. La synthèse rapide, efficace, verte et économique de ces structures suscite de plus en plus d’attention dans la littérature en raison des cibles biologiques visées qui deviennent de plus en plus complexes. Ce mémoire se divise en deux projets ciblant la synthèse de deux structures aromatiques importantes dans le monde de la chimie médicinale. Dans un premier temps, l’amélioration de la synthèse de dérivés phénoliques a été réalisée. L’apport de la chimie en flux continu dans le développement de voies synthétiques plus vertes et efficaces sera tout d’abord discuté. Ensuite, une revue des antécédents concernant l’hydroxylation d’halogénure d’aryle sera effectuée. Finalement, le développement d’une nouvelle approche rapide de synthèse des phénols utilisant la chimie en flux continu sera présenté, suivi d’un survol de ses avantages et ses limitations. Dans un deuxième temps, le développement d’une nouvelle méthodologie pour la formation de 3-aminoindazoles a été réalisé. Tout d’abord, un résumé de la littérature sur la synthèse de différents indazoles sera présenté. Ensuite, une présentation de deux méthodes efficaces d’activation de liens sera effectuée, soit l’activation d’amides par l’anhydride triflique et l’activation de liens C–H catalysée par des métaux de transition. Finalement, le développement d’une nouvelle méthodologie pour la synthèse de 3-aminoindazole utilisant ces deux approches sera discuté.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
Cette thèse présente une nouvelle méthode pour accomplir la réaction de Mallory en utilisant la lumière visible. Pour atteindre ce but, la chimie photorédox qui s'est développée ces dernières années permettra une utilisation efficace de la lumière visible. De plus, la chimie en flux continu sera utilisé afin d'augmenter la surface irradiée du mélange réactionnel. Au cours de ces travaux, une nouvelle méthodologie photochimique utilisant un photocatalyseur de cuivre avec la lumière visible a été efficace pour la synthèse du 5hélicène. Un mécanisme de désactivation oxydante est proposé pour cette réaction. Par ailleurs, cette nouvelle méthodologie a été utilisée pour la synthèse d'un dérivé du 5hélicène et d'un 4hélicène-pyrène hybride. Par la suite, la méthodologie photochimique utilisant un photocatalyseur de cuivre avec la lumière visible a servi à la synthèse de divers carbazoles substitués au niveau de l'azote par des groupements aryles et alkyles. Au cours de cette synthèse, la réaction a révélé un problème de régiosélectivité. Ce dernier a été étudié par la synthèse de nouvelles triarylamines. Finalement, il a été découvert que l'utilisation d'un photocatalyseur de fer peut remplacer le photocatalyseur de cuivre en utilisant l'oxygène comme oxydant pour la synthèse de 9-phénylcarbazole.
Resumo:
Pour analyser les images en tomodensitométrie, une méthode stœchiométrique est gé- néralement utilisée. Une courbe relie les unités Hounsfield d’une image à la densité électronique du milieu. La tomodensitométrie à double énergie permet d’obtenir des informations supplémentaires sur ces images. Une méthode stœchiométrique a été dé- veloppée pour permettre de déterminer les valeurs de densité électronique et de numéro atomique effectif à partir d’une paire d’images d’un tomodensitomètre à double énergie. Le but de cette recherche est de développer une nouvelle méthode d’identification de tissus en utilisant ces paramètres extraits en tomodensitométrie à double énergie. Cette nouvelle méthode est comparée avec la méthode standard de tomodensitométrie à simple énergie. Par ailleurs, l’impact dosimétrique de bien identifier un tissu est déterminé. Des simulations Monte Carlo permettent d’utiliser des fantômes numériques dont tous les paramètres sont connus. Les différents fantômes utilisés permettent d’étalonner les méthodes stœchiométriques, de comparer la polyvalence et la robustesse des méthodes d’identification de tissus double énergie et simple énergie, ainsi que de comparer les distributions de dose dans des fantômes uniformes de mêmes densités, mais de compo- sitions différentes. La méthode utilisant la tomodensitométrie à double énergie fournit des valeurs de densi- tés électroniques plus exactes, quelles que soient les conditions étudiées. Cette méthode s’avère également plus robuste aux variations de densité des tissus. L’impact dosimé- trique d’une bonne identification de tissus devient important pour des traitements aux énergies plus faibles, donc aux énergies d’imagerie et de curiethérapie.
Resumo:
La diversification des résultats de recherche (DRR) vise à sélectionner divers documents à partir des résultats de recherche afin de couvrir autant d’intentions que possible. Dans les approches existantes, on suppose que les résultats initiaux sont suffisamment diversifiés et couvrent bien les aspects de la requête. Or, on observe souvent que les résultats initiaux n’arrivent pas à couvrir certains aspects. Dans cette thèse, nous proposons une nouvelle approche de DRR qui consiste à diversifier l’expansion de requête (DER) afin d’avoir une meilleure couverture des aspects. Les termes d’expansion sont sélectionnés à partir d’une ou de plusieurs ressource(s) suivant le principe de pertinence marginale maximale. Dans notre première contribution, nous proposons une méthode pour DER au niveau des termes où la similarité entre les termes est mesurée superficiellement à l’aide des ressources. Quand plusieurs ressources sont utilisées pour DER, elles ont été uniformément combinées dans la littérature, ce qui permet d’ignorer la contribution individuelle de chaque ressource par rapport à la requête. Dans la seconde contribution de cette thèse, nous proposons une nouvelle méthode de pondération de ressources selon la requête. Notre méthode utilise un ensemble de caractéristiques qui sont intégrées à un modèle de régression linéaire, et génère à partir de chaque ressource un nombre de termes d’expansion proportionnellement au poids de cette ressource. Les méthodes proposées pour DER se concentrent sur l’élimination de la redondance entre les termes d’expansion sans se soucier si les termes sélectionnés couvrent effectivement les différents aspects de la requête. Pour pallier à cet inconvénient, nous introduisons dans la troisième contribution de cette thèse une nouvelle méthode pour DER au niveau des aspects. Notre méthode est entraînée de façon supervisée selon le principe que les termes reliés doivent correspondre au même aspect. Cette méthode permet de sélectionner des termes d’expansion à un niveau sémantique latent afin de couvrir autant que possible différents aspects de la requête. De plus, cette méthode autorise l’intégration de plusieurs ressources afin de suggérer des termes d’expansion, et supporte l’intégration de plusieurs contraintes telles que la contrainte de dispersion. Nous évaluons nos méthodes à l’aide des données de ClueWeb09B et de trois collections de requêtes de TRECWeb track et montrons l’utilité de nos approches par rapport aux méthodes existantes.
Resumo:
La fibrillation auriculaire est le trouble du rythme le plus fréquent chez l'homme. Elle conduit souvent à de graves complications telles que l'insuffisance cardiaque et les accidents vasculaires cérébraux. Un mécanisme neurogène de la fibrillation auriculaire mis en évidence. L'induction de tachyarythmie par stimulation du nerf médiastinal a été proposée comme modèle pour étudier la fibrillation auriculaire neurogène. Dans cette thèse, nous avons étudié l'activité des neurones cardiaques intrinsèques et leurs interactions à l'intérieur des plexus ganglionnaires de l'oreillette droite dans un modèle canin de la fibrillation auriculaire neurogène. Ces activités ont été enregistrées par un réseau multicanal de microélectrodes empalé dans le plexus ganglionnaire de l'oreillette droite. L'enregistrement de l'activité neuronale a été effectué continument sur une période de près de 4 heures comprenant différentes interventions vasculaires (occlusion de l'aorte, de la veine cave inférieure, puis de l'artère coronaire descendante antérieure gauche), des stimuli mécaniques (toucher de l'oreillette ou du ventricule) et électriques (stimulation du nerf vague ou des ganglions stellaires) ainsi que des épisodes induits de fibrillation auriculaire. L'identification et la classification neuronale ont été effectuées en utilisant l'analyse en composantes principales et le partitionnement de données (cluster analysis) dans le logiciel Spike2. Une nouvelle méthode basée sur l'analyse en composante principale est proposée pour annuler l'activité auriculaire superposée sur le signal neuronal et ainsi augmenter la précision de l'identification de la réponse neuronale et de la classification. En se basant sur la réponse neuronale, nous avons défini des sous-types de neurones (afférent, efférent et les neurones des circuits locaux). Leur activité liée à différents facteurs de stress nous ont permis de fournir une description plus détaillée du système nerveux cardiaque intrinsèque. La majorité des neurones enregistrés ont réagi à des épisodes de fibrillation auriculaire en devenant plus actifs. Cette hyperactivité des neurones cardiaques intrinsèques suggère que le contrôle de cette activité pourrait aider à prévenir la fibrillation auriculaire neurogène. Puisque la stimulation à basse intensité du nerf vague affaiblit l'activité neuronale cardiaque intrinsèque (en particulier pour les neurones afférents et convergents des circuits locaux), nous avons examiné si cette intervention pouvait être appliquée comme thérapie pour la fibrillation auriculaire. Nos résultats montrent que la stimulation du nerf vague droit a été en mesure d'atténuer la fibrillation auriculaire dans 12 des 16 cas malgré un effet pro-arythmique défavorable dans 1 des 16 cas. L'action protective a diminué au fil du temps et est devenue inefficace après ~ 40 minutes après 3 minutes de stimulation du nerf vague.
Resumo:
Réalisé en cotutelle avec Aix Marseille Université.
Resumo:
La scoliose idiopathique de l’adolescent (SIA) est une déformation tridimensionnelle (3D) de la colonne vertébrale. Pour la plupart des patients atteints de SIA, aucun traitement chirurgical n’est nécessaire. Lorsque la déformation devient sévère, un traitement chirurgical visant à réduire la déformation est recommandé. Pour déterminer la sévérité de la SIA, l’imagerie la plus utilisée est une radiographie postéroantérieure (PA) ou antéro-postérieure (AP) du rachis. Plusieurs indices sont disponibles à partir de cette modalité d’imagerie afin de quantifier la déformation de la SIA, dont l’angle de Cobb. La conduite thérapeutique est généralement basée sur cet indice. Cependant, les indices disponibles à cette modalité d’imagerie sont de nature bidimensionnelle (2D). Celles-ci ne décrivent donc pas entièrement la déformation dans la SIA dû à sa nature tridimensionnelle (3D). Conséquemment, les classifications basées sur les indices 2D souffrent des mêmes limitations. Dans le but décrire la SIA en 3D, la torsion géométrique a été étudiée et proposée par Poncet et al. Celle-ci mesure la tendance d’une courbe tridimensionnelle à changer de direction. Cependant, la méthode proposée est susceptible aux erreurs de reconstructions 3D et elle est calculée localement au niveau vertébral. L’objectif de cette étude est d’évaluer une nouvelle méthode d’estimation de la torsion géométrique par l’approximation de longueurs d’arcs locaux et par paramétrisation de courbes dans la SIA. Une première étude visera à étudier la sensibilité de la nouvelle méthode présentée face aux erreurs de reconstructions 3D du rachis. Par la suite, deux études cliniques vont présenter la iv torsion géométrique comme indice global et viseront à démontrer l’existence de sous-groupes non-identifiés dans les classifications actuelles et que ceux-ci ont une pertinence clinique. La première étude a évalué la robustesse de la nouvelle méthode d’estimation de la torsion géométrique chez un groupe de patient atteint de la SIA. Elle a démontré que la nouvelle technique est robuste face aux erreurs de reconstructions 3D du rachis. La deuxième étude a évalué la torsion géométrique utilisant cette nouvelle méthode dans une cohorte de patient avec des déformations de type Lenke 1. Elle a démontré qu’il existe deux sous-groupes, une avec des valeurs de torsion élevées et l’autre avec des valeurs basses. Ces deux sous-groupes possèdent des différences statistiquement significatives, notamment au niveau du rachis lombaire avec le groupe de torsion élevée ayant des valeurs d’orientation des plans de déformation maximales (PMC) en thoraco-lombaire (TLL) plus élevées. La dernière étude a évalué les résultats chirurgicaux de patients ayant une déformation Lenke 1 sous-classifiées selon les valeurs de torsion préalablement. Cette étude a pu démontrer des différences au niveau du PMC au niveau thoraco-lombaire avec des valeurs plus élevées en postopératoire chez les patients ayant une haute torsion. Ces études présentent une nouvelle méthode d’estimation de la torsion géométrique et présentent cet indice quantitativement. Elles ont démontré l’existence de sous-groupes 3D basés sur cet indice ayant une pertinence clinique dans la SIA, qui n’étaient pas identifiés auparavant. Ce projet contribue dans la tendance actuelle vers le développement d’indices 3D et de classifications 3D pour la scoliose idiopathique de l’adolescent.
Resumo:
A new method for enhancing the 2.1 VSWR impedance bandwidth of microstrip antennas is presented. Bandwidth enhancement is achieved by loading the microstrip antenna by a ceramic microwave dielectric resonator (DR). The validity of this technique has been established using rectangular and circular radiating geometries. This method improves the bandwidth of a rectangular microstrip antenna to more than 10% (= 5 times that of a conventional rectangular microstrip antenna) with an enhanced gain of I dB
Resumo:
A new method for the fabrication of high uniformity monolithic 1 x 4 single mode fused coupler is described together with details of its performance in terms of coupling ratio, spectral response and uniformity. The fabricated device exhibits ultra-broadband performance with a port-to-port uniformity of 0.4 dB. The reliability of such couplers is also evaluated and found to have good stability. Moreover, by controlling the process parameters it is possible to control the power remaining in the through put port of the device, which can be used for dedicated non-intrusive network health monitoring.