961 resultados para near-rectangular slot
Resumo:
The DNA-enabled dimerization of pentamethine cyanine (Cy5) dyes was studied by optical methods. The value of cyanine as a chiroptical reporter using a monomer-to-dimer switch is demonstrated. The specific shape of the CD signal and its high intensity are a result of J-type assembly.
Resumo:
The present study reports for the first time the optimization of the infrared (1523 nm) to near-infrared (980 nm) upconversion quantum yield (UC-QY) of hexagonal trivalent erbium doped sodium yttrium fluoride (β-NaYF4:Er3+) in a perfluorocyclobutane (PFCB) host matrix under monochromatic excitation. Maximum internal and external UC-QYs of 8.4% ± 0.8% and 6.5% ± 0.7%, respectively, have been achieved for 1523 nm excitation of 970 ± 43 Wm−2 for an optimum Er3+ concentration of 25 mol% and a phosphor concentration of 84.9 w/w% in the matrix. These results correspond to normalized internal and external efficiencies of 0.86 ± 0.12 cm2 W−1 and 0.67 ± 0.10 cm2 W−1, respectively. These are the highest values ever reported for β-NaYF4:Er3+ under monochromatic excitation. The special characteristics of both the UC phosphor β-NaYF4:Er3+ and the PFCB matrix give rise to this outstanding property. Detailed power and time dependent luminescence measurements reveal energy transfer upconversion as the dominant UC mechanism.
Resumo:
Background: Basophils constitute a rare leukocyte population known for their effector functions in inflammation and allergy, as well as more recently described immunoregulatory roles. Besides their low frequency, functional analysis of basophils is hindered by a short life span, inefficient ex vivo differentiation protocols, and lack of suitable cell models. A method to produce large quantities of basophils in vitro would facilitate basophil research and constitute a sought-after tool for diagnostic and drug testing purposes. Methods: A method is described to massively expand bone marrow–derived basophils in vitro. Myeloid progenitors are conditionally immortalized using Hoxb8 in the presence of interleukin-3 (IL-3) and outgrowing cell lines selected for their potential to differentiate into basophils upon shutdown of Hoxb8 expression. Results: IL-3-dependent, conditional Hoxb8-immortalized progenitor cell lines can be expanded and maintained in culture for prolonged periods. Upon shutdown of Hoxb8 expression, near-unlimited numbers of mature functional basophils can be differentiated in vitro within six days. The cells are end-differentiated and short-lived and express basophil-specific surface markers and proteases. Upon IgE- as well as C5a-mediated activation, differentiated basophils release granule enzymes and histamine and secrete Th2-type cytokines (IL-4, IL-13) and leukotriene C4. IL-3-deprivation induces apoptosis correlating with upregulation of the BH3-only proteins BCL-2-interacting mediator of cell death (BIM) and p53 upregulated modulator of apoptosis (PUMA) and downregulation of proviral integration site for Moloney murine leukemia virus 1 kinase (PIM-1). Conclusion: A novel method is presented to generate quantitative amounts of mouse basophils in vitro, which moreover allows genetic manipulation of conditionally immortalized progenitors. This approach may represent a useful alternative method to isolating primary basophils.
Resumo:
We obtain the next-to-next-to-leading order corrections to transverse-momentum spectra of W, Z and Higgs bosons near the partonic threshold. In the threshold limit, the electroweak boson recoils against a low-mass jet and all radiation is either soft, or collinear to the jet or the beam directions. We extract the virtual corrections from known results for the relevant two-loop four-point amplitudes and combine them with the soft and collinear two-loop functions as defined in Soft-Collinear Effective Theory. We have implemented these results in a public code PeTeR and present numerical results for the threshold resummed cross section of W and Z bosons at next-to-next-to-next-to-leading logarithmic accuracy, matched to next-to-leading fixed-order perturbation theory. The two-loop corrections lead to a moderate increase in the cross section and reduce the scale uncertainty by about a factor of two. The corrections are significantly larger for Higgs production.
Resumo:
This study tests whether cognitive failures mediate effects of work-related time pressure and time control on commuting accidents and near-accidents. Participants were 83 employees (56% female) who each commuted between their regular place of residence and place of work using vehicles. The Workplace Cognitive Failure Scale (WCFS) asked for the frequency of failure in memory function, failure in attention regulation, and failure in action execution. Time pressure and time control at work were assessed by the Instrument for Stress Oriented Task Analysis (ISTA). Commuting accidents in the last 12 months were reported by 10% of participants, and half of the sample reported commuting near-accidents in the last 4 weeks. Cognitive failure significantly mediated the influence of time pressure at work on near-accidents even when age, gender, neuroticism, conscientiousness, commuting duration, commuting distance, and time pressure during commuting were controlled for. Time control was negatively related to cognitive failure and neuroticism, but no association with commuting accidents or near-accidents was found. Time pressure at work is likely to increase cognitive load. Time pressure might, therefore, increase cognitive failures during work and also during commuting. Hence, time pressure at work can decrease commuting safety. The result suggests a reduction of time pressure at work should improve commuting safety.
Resumo:
The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of AH=0.11±0.06 for the global neutralized albedo, which is ˜25% larger than the previous values of 0.09±0.05, based on an assumed uniform scattering distribution.
Resumo:
We report the first observation of protons in the near-lunar (100-200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.
Resumo:
The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .
Resumo:
We investigate the 2-d O(3) model with a q-term as a toy model for slowly walking 4-d non-Abelian gauge theories. Using the very efficient meron-cluster algorithm, an accurate investigation of the scale dependence of the renormalized coupling is carried out for different values of the vacuum angle q. Approaching q = p, the infrared dynamics of the 2-d O(3) model is determined by a non-trivial conformal fixed point. We provide evidence for a slowly walking behavior near the fixed point and we perform a finite-size scaling analysis of the mass gap.
Resumo:
Alpine grasslands are an important source of fodder for the cattle of Alpine farmers. Only during the short summer season can these pastures be used for grazing. With the anticipated climate change, it is likely that plant production – and thus the fodder basis for the cattle – will be influenced. Investigating the dependence of biomass production on topoclimatic factors will allow us to better understand how anticipated climate change may influence this traditional Alpine farming system. Because small-scale topoclimatological variations of the main meteorological variables: temperature, humidity, precipitation, shortwave incoming radiation and wind speed are not easily derived from available long-term climate stations in mountainous terrain, it was our goal to investigate the topoclimatic variations over the pastures belonging to the Alp Weissenstein research station north of the Albula Pass in the eastern Swiss Alps. We present a basic assessment of current topoclimatic conditions as a site characterization for ongoing ecological climate change studies. To be able to link short-term studies with long-term climate records, we related agrometeorological measurements with those of surrounding long-term sites run by MeteoSwiss, both on valley bottoms (Davos, Samedan), and on mountain tops (Weissfluhjoch, Piz Corvatsch). We found that the Davos climate station north of the study area is most closely correlated with the local climate of Alp Weissenstein, although a much closer site (Samedan) exists on the other side of the Albula Pass. Mountain top stations, however, did not provide a convincing approximation for the climate at Alp Weissenstein. Direct comparisons of near-surface measurements from a set of 11 small weather stations distributed over the domain where cattle and sheep are grazed indicate that nocturnal minimum air temperature and minimum vapor pressure deficit are mostly governed by the altitudinal gradient, whereas daily maxima – including also wind speed – are more strongly depending on vegetation cover and less on the altitude.
Resumo:
The aim of this study was to investigate the effects of inner and heard speech on cerebral hemodynamics and oxygenation in the anterior prefrontal cortex (PFC) using functional near-infrared spectroscopy and to test whether potential effects were caused by alterations in the arterial carbon dioxide pressure (PaCO2). Twenty-nine healthy adult volunteers performed six different tasks of inner and heard speech according to a randomized crossover design. During the tasks, we generally found a decrease in PaCO2 (only for inner speech), tissue oxygen saturation (StO2), oxyhemoglobin ([O2Hb]), total hemoglobin ([tHb]) concentration and an increase in deoxyhemoglobin concentration ([HHb]). Furthermore, we found significant relations between changes in [O2Hb], [HHb], [tHb], or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. We conclude that changes in breathing during the tasks led to lower PaCO2 (hypocapnia) for inner speech. During heard speech, no significant changes in PaCO2 occurred, but the decreases in StO2, [O2Hb], and [tHb] suggest that changes in PaCO2 were also involved here. Different verse types (hexameter and alliteration) led to different changes in [tHb], implying different brain activations. In conclusion, StO2, [O2Hb], [HHb], and [tHb] are affected by interplay of both PaCO2 reactivity and functional brain activity.