829 resultados para muscle action potential
Resumo:
OBJECTIVE: To investigate the effects of tyrosine-kinase inhibitors of vascular endothelial growth factor (VECF) and platelet-derived growth factor (PDCF)-receptors on non-malignant tissue and whether they depend upon the stage of vascular maturation. MATERIALS AND METHODS: PTK787/ZK222584 and CGP53716 (VEGF- and PDGF-receptor inhibitor respectively), both alone and combined, were applied on chicken chorioallantoic membrane (CAM). RESULTS: On embryonic day of CAM development (E)8, only immature microvessels, which lack coverage of pericytes, are present: whereas the microvessels on E12 have pericytic coverage. This development was reflected in the expression levels of pericytic markers (alpha-smooth muscle actin, PDGF-receptor beta and desmin), which were found by immunoblotting to progressively increase between E8 and E12. Monotherapy with 2 microg of PTK787/ZK222584 induced significant vasodegeneration on E8, but not on E12. Monotherapy with CGP53716 affected only pericytes. When CGP53716 was applied prior to treatment with 2 microg of PTK787/ZK222584, vasodegeneration occurred also on E12. The combined treatment increased the apoptotic rate. as evidenced by the cDNA levels of caspase-9 and the TUNEL-assay. CONCLUSION: Anti-angiogenic treatment strategies for non-neoplastic disorders should aim to interfere with the maturation stage of the target vessels: monotherapy with VEGF-receptor inhibitor for immature vessels, and combined anti-angiogenic treatment for well developed mature vasculature.
Resumo:
Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.
Resumo:
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca(2+) signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.
Resumo:
We recently demonstrated that in vivo insulin resistance is not retained in cultured skeletal muscle cells. In the present study, we tested the hypothesis that treating cultured skeletal muscle cells with fatty acids has an effect on insulin action which differs between insulin-sensitive and insulin-resistant subjects. Insulin effects were examined in myotubes from 8 normoglycemic non-obese insulin-resistant and 8 carefully matched insulin-sensitive subjects after preincubation with or without palmitate, linoleate, and 2-bromo-palmitate. Insulin-stimulated glycogen synthesis decreased by 27 +/- 5 % after palmitate treatment in myotubes from insulin-resistant, but not from insulin-sensitive subjects (1.50 +/- 0.08-fold over basal vs. 1.81 +/- 0.09-fold, p = 0.042). Despite this observation, we did not find any impairment in the PI 3-kinase/PKB/GSK-3 pathway. Furthermore, insulin action was not affected by linoleate and 2-bromo-palmitate. In conclusion, our data provide preliminary evidence that insulin resistance of skeletal muscle does not necessarily involve primary defects in insulin action, but could represent susceptibility to the desensitizing effect of fatty acids and possibly other environmental or adipose tissue-derived factors.
Resumo:
To determine the immediate effect of thiazolidinediones on human skeletal muscle, differentiated human myotubes were acutely (1 day) and myoblasts chronically (during the differentiation process) treated with troglitazone (TGZ). Chronic TGZ treatment resulted in loss of the typical multinucleated phenotype. The increase of muscle markers typically observed during differentiation was suppressed, while adipocyte markers increased markedly. Chronic TGZ treatment increased insulin-stimulated phosphatidylinositol (PI) 3-kinase activity and membranous protein kinase B/Akt (PKB/Akt) Ser-473 phosphorylation more than 4-fold. Phosphorylation of p42/44 mitogen-activated protein kinase (42/44 MAPK/ERK) was unaltered. Basal glucose uptake as well as both basal and insulin-stimulated glycogen synthesis increased approximately 1.6- and approximately 2.5-fold after chronic TGZ treatment, respectively. A 2-fold stimulation of PI 3-kinase but no other significant TGZ effect was found after acute TGZ treatment. In conclusion, chronic TGZ treatment inhibited myogenic differentiation of that human muscle while inducing adipocyte-specific gene expression. The effects of chronic TGZ treatment on basal glucose transport may in part be secondary to this transdifferentiation. The enhancing effect on PI 3-kinase and PKB/Akt involved in both differentiation and glycogen synthesis appears to be pivotal in the cellular action of TGZ.
Resumo:
OBJECTIVES: The endocannabinoid system is an endogenous lipid signalling network comprising arachidonic-acid-derived ligands, cannabinoid (CB) receptors, transporters and endocannabinoid degrading enzymes. The CB(1) receptor is predominantly expressed in neurons but is also co-expressed with the CB(2) receptor in peripheral tissues. In recent years, CB receptor ligands, including Delta(9)-tetrahydrocannabinol, have been proposed as potential anticancer agents. KEY FINDINGS: This review critically discusses the pharmacology of CB receptor activation as a novel therapeutic anticancer strategy in terms of ligand selectivity, tissue specificity and potency. Intriguingly, antitumour effects mediated by cannabinoids are not confined to inhibition of cancer cell proliferation; cannabinoids also reduce angiogenesis, cell migration and metastasis, inhibit carcinogenesis and attenuate inflammatory processes. In the last decade several new selective CB(1) and CB(2) receptor agents have been described, but most studies in the area of cancer research have used non-selective CB ligands. Moreover, many of these ligands exert prominent CB receptor-independent pharmacological effects, such as activation of the G-protein-coupled receptor GPR55, peroxisome proliferator-activated receptor gamma and the transient receptor potential vanilloid channels. SUMMARY: The role of the endocannabinoid system in tumourigenesis is still poorly understood and the molecular mechanisms of cannabinoid anticancer action need to be elucidated. The development of CB(2)-selective anticancer agents could be advantageous in light of the unwanted central effects exerted by CB(1) receptor ligands. Probably the most interesting question is whether cannabinoids could be useful in chemoprevention or in combination with established chemotherapeutic agents.
Resumo:
1-[(3’-Diethylaminopropyl)-3-(substitutedphenylmethylene) pyrrolidines] were synthe-sized and evaluated for CQ resistant reversal activity. The compounds of the series elicit better biological response than their phenyl methyl analogues in general. The most active compound 4b has been evaluated in vivo in details and the results are presented. The possible mode of action of the compounds of this series is by inhibition of the enzyme heme oxygenase, thereby increasing the levels of heme and hemozoin, which are lethal to the parasite.
Resumo:
The past decade has witnessed a period of intense economic globalisation. The growing significance of international trade, investment, production and financial flows appears to be curtailing the autonomy of individual nation states. In particular, globalisation appears to be encouraging, if not demanding, a decline in social spending and standards. However, many authors believe that this thesis ignores the continued impact of national political and ideological pressures and lobby groups on policy outcomes. In particular, it has been argued that national welfare consumer and provider groups remain influential defenders of the welfare state. For example, US aged care groups are considered to be particularly effective defenders of social security pensions. According to this argument, governments engaged in welfare retrenchment may experience considerable electoral backlash (Pierson 1996; Mishra 1999). Yet, it is also noted that governments can take action to reduce the impact of such groups by reducing their funding, and their access to policy-making and consultation processes. These actions are then justified on the basis of removing potential obstacles to economic competitiveness (Pierson 1994; Melville 1999).
Resumo:
In horses, gastrointestinal (GI) disorders occur frequently and cause a considerable demand for efficient medication. 5-Hydroxytryptamine receptors (5-HT) have been reported to be involved in GI tract motility and thus, are potential targets for treating functional bowel disorders. Our studies extend current knowledge on the 5-HT(7) receptor in equine duodenum, ileum and pelvic flexure by studying its expression throughout the intestine and its role in modulating contractility in vitro by immunofluorescence and organ bath experiments, respectively. 5-HT(7) immunoreactivity was demonstrated in both smooth muscle layers, particularly in the circular one, and within the myenteric plexus. Interstitial cells of Cajal (ICC), identified by c-Kit labeling, show a staining pattern similar to that of 5-HT(7) immunoreactivity. The selective 5-HT(7) receptor antagonist SB-269970 increased the amplitude of contractions in spontaneous contracting specimens of the ileum and in electrical field-stimulated specimens of the pelvic flexure concentration-dependently. Our in vitro experiments suggest an involvement of the 5-HT(7) receptor subtype in contractility of equine intestine. While the 5-HT(7) receptor has been established to be constitutively active and inhibits smooth muscle contractility, our experiments demonstrate an increase in contractility by the 5-HT(7) receptor ligand SB-269970, suggesting it exerting inverse agonist properties.
Resumo:
Neurons in Action (NIA1, 2000; NIA1.5, 2004; NIA2, 2007), a set of tutorials and linked simulations, is designed to acquaint students with neuronal physiology through interactive, virtual laboratory experiments. Here we explore the uses of NIA in lecture, both interactive and didactic, as well as in the undergraduate laboratory, in the graduate seminar course, and as an examination tool through homework and problem set assignments. NIA, made with the simulator NEURON (http://www.neuron.yale.edu/neuron/), displays voltages, currents, and conductances in a membrane patch or signals moving within the dendrites, soma and/or axon of a neuron. Customized simulations start with the plain lipid bilayer and progress through equilibrium potentials; currents through single Na and K channels; Na and Ca action potentials; voltage clamp of a patch or a whole neuron; voltage spread and propagation in axons, motoneurons and nerve terminals; synaptic excitation and inhibition; and advanced topics such as channel kinetics and coincidence detection. The user asks and answers "what if" questions by specifying neuronal parameters, ion concentrations, and temperature, and the experimental results are then plotted as conductances, currents, and voltage changes. Such exercises provide immediate confirmation or refutation of the student's ideas to guide their learning. The tutorials are hyperlinked to explanatory information and to original research papers. Although the NIA tutorials were designed as a sequence to empower a student with a working knowledge of fundamental neuronal principles, we find that faculty are using the individual tutorials in a variety of educational situations, some of which are described here. Here we offer ideas to colleagues using interactive software, whether NIA or another tool, for educating students of differing backgrounds in the subject of neurophysiology.
Resumo:
This report on The Potential of Mode of Action (MoA) Information Derived from Non-testing and Screening Methodologies to Support Informed Hazard Assessment, resulted from a workshop organised within OSIRIS (Optimised Strategies for Risk Assessment of Industrial Chemicals through Integration of Non-test and Test Information), a project partly funded by the EU Commission within the Sixth Framework Programme. The workshop was held in Liverpool, UK, on 30 October 2008, with 35 attendees. The goal of the OSIRIS project is to develop integrated testing strategies (ITS) fit for use in the REACH system, that would enable a significant increase in the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. One way to improve the evaluation of chemicals may be through categorisation by way of mechanisms or modes of toxic action. Defining such groups can enhance read-across possibilities and priority settings for certain toxic modes or chemical structures responsible for these toxic modes. Overall, this may result in a reduction of in vivo testing on organisms, through combining available data on mode of action and a focus on the potentially most-toxic groups. In this report, the possibilities of a mechanistic approach to assist in and guide ITS are explored, and the differences between human health and environmental areas are summarised.
Resumo:
Cattle in three experiments were scanned with ultrasound as feeders to measure ribeye area and thickness of fat cover to determine if cattle could be sorted into outcome groups with respect to carcass yield. Sorting the cattle into low fat cover or large ribeye groups resulted in improved carcass yield grades. There were no effects on carcass quality grades related to sorting of the cattle. Cattle with greater fat cover at the beginning of the feeding period were heavier, seemed to be more mature and had less muscle growth during the finishing period. There were no significant differences in gain among the groups, but cattle with more fat cover had poorer feed efficiency. Ultrasound seems to have potential to sort feeder cattle, but before it can be used in practice, growth curves need to be developed to predict final end points of individual cattle.
Resumo:
CONTEXT Aims of bladder preservation in muscle-invasive bladder cancer (MIBC) are to offer a quality-of-life advantage and avoid potential morbidity or mortality of radical cystectomy (RC) without compromising oncologic outcomes. Because of the lack of a completed randomised controlled trial, oncologic equivalence of bladder preservation modality treatments compared with RC remains unknown. OBJECTIVE This systematic review sought to assess the modern bladder-preservation treatment modalities, focusing on trimodal therapy (TMT) in MIBC. EVIDENCE ACQUISITION A systematic literature search in the PubMed and Cochrane databases was performed from 1980 to July 2013. EVIDENCE SYNTHESIS Optimal bladder-preservation treatment includes a safe transurethral resection of the bladder tumour as complete as possible followed by radiation therapy (RT) with concurrent radiosensitising chemotherapy. A standard radiation schedule includes external-beam RT to the bladder and limited pelvic lymph nodes to an initial dose of 40Gy, with a boost to the whole bladder to 54Gy and a further tumour boost to a total dose of 64-65Gy. Radiosensitising chemotherapy with phase 3 trial evidence in support exists for cisplatin and mitomycin C plus 5-fluorouracil. A cystoscopic assessment with systematic rebiopsy should be performed at TMT completion or early after TMT induction. Thus, nonresponders are identified early to promptly offer salvage RC. The 5-yr cancer-specific survival and overall survival rates range from 50% to 82% and from 36% to 74%, respectively, with salvage cystectomy rates of 25-30%. There are no definitive data to support the benefit of using of neoadjuvant or adjuvant chemotherapy. Critical to good outcomes is proper patient selection. The best cancers eligible for bladder preservation are those with low-volume T2 disease without hydronephrosis or extensive carcinoma in situ. CONCLUSIONS A growing body of accumulated data suggests that bladder preservation with TMT leads to acceptable outcomes and therefore may be considered a reasonable treatment option in well-selected patients. PATIENT SUMMARY Treatment based on a combination of resection, chemotherapy, and radiotherapy as bladder-sparing strategies may be considered as a reasonable treatment option in properly selected patients.
Resumo:
The function of myogenic regulatory factors (MRFs) during adult life is not well understood. The requirement of one of these MRFs, myogenin (Myog), during embryonic muscle development suggests an equally important role in adult muscle. In this study, we have determined the function of myogenin during adult life using a conditional allele of Myog. In contrast to embryonic development, myogenin is not required for adult viability, and Myog-deleted mice exhibited no remarkable phenotypic changes during sedentary life. Remarkably, sedentary Myog-deleted mice demonstrated enhanced exercise endurance during involuntary treadmill running. Altered blood glucose and lactate levels in sedentary Myog-deleted mice after exhaustion suggest an enhanced glycolytic metabolism and an ability to excessively deplete muscle and liver glycogen stores. Traditional changes associated with enhanced exercise endurance, such as fiber type switching, and increased oxidative potential, were not detected in sedentary Myog-deleted mice. After long-term voluntary exercise, trained Myog-deleted mice demonstrated an enhanced adaptive response to exercise. Trained Myog-deleted mice exhibited superior exercise endurance associated with an increased proportion of slow-twitch fibers and increased oxidative capacity. In a parallel experiment, dystrophin-deficient young adult mice showed attenuated muscle fatigue following the deletion of Myog. These results demonstrate a novel and unexpected role for myogenin in modulating skeletal muscle metabolism.
Resumo:
Ocean acidification has emerged over the last two decades as one of the largest threats to marine organisms and ecosystems. However, most research efforts on ocean acidification have so far neglected management and related policy issues to focus instead on understanding its ecological and biogeochemical implications. This shortfall is addressed here with a systematic, international and critical review of management and policy options. In particular, we investigate the assumption that fighting acidification is mainly, but not only, about reducing CO2 emissions, and explore the leeway that this emerging problem may open in old environmental issues. We review nine types of management responses, initially grouped under four categories: preventing ocean acidification; strengthening ecosystem resilience; adapting human activities; and repairing damages. Connecting and comparing options leads to classifying them, in a qualitative way, according to their potential and feasibility. While reducing CO2 emissions is confirmed as the key action that must be taken against acidification, some of the other options appear to have the potential to buy time, e.g. by relieving the pressure of other stressors, and help marine life face unavoidable acidification. Although the existing legal basis to take action shows few gaps, policy challenges are significant: tackling them will mean succeeding in various areas of environmental management where we failed to a large extent so far.