918 resultados para multi-layer transfer-matrix
Resumo:
The paper deals with the flow and heat-transfer problem of a steady axisymmetric laminar incompressible boundary layer swirling flow of a fluid through a conical hydrocyclone. The implicit finitedifference scheme is used to solve the partial differential equations governing the flow. The effect of swirl is found to be more pronounced on the longitudinal skin friction than on the tangential skin friction and heat transfer. The skin friction and heat transfer increase with swirl or with longitudinal distance. Swirl also gives rise to velocity overshoot in the longitudinal velocity profiles and the magnitude of the velocity overshoot increases as the swirl parameter increases. The results are found to be in good agreement with those of the local nonsimilarity and momentum integral methods but they differ appreciably from those of the local similarity method except for the longitudinal skin friction which is fairly in good agreement with that of the local similarity method.Die Arbeit beschäftigt sich mit der Strömung und dem Wärmeübergang in einem konischen Zyklon unter der Voraussetzung stationärer, achsensymmetrischer, laminarer, inkompressibler Grenzschichtströmung. Ein implizites Differenzenverfahren wird benutzt, um die partiellen Differentialgleichungen zu lösen. Der Einfluß des Dralls ist besonders ausgeprägt auf die longitudinale Komponente der Oberflächenreibung, weniger dagegen bei der tangentialen Komponente und beim Wärmeübergang. Die Oberflächenreibung und der Wärmeübergang nehmen zu mit dem Drall, sowie mit dem longitudinalen Abstand. Der Drall erzeugt ein Überschießen der Geschwindigkeit in der longitudinalen Abstand. Der Drall erzeugt ein Überschießen der Geschwindigkeit in der Längsrichtung. Die Größe des Überschusses nimmt mit wachsendem Drallparameter zu. Die Resultate stimmen gut mit den Ergebnissen der Theorie der lokalen Nichtähnlichkeit und der Impulsintegralmethode überein. Dagegen weichen sie mit Ausnahme der longitudinalen Komponente der Oberflächenreibung beträchtlich von den Resultaten der Theorie der lokalen Ähnlichkeit ab.
Resumo:
The steady laminar compressible boundary layer flow of an electrically conducting fluid in the stagnation region of a sphere with an applied magnetic field has been studied. The effects of the induced magnetic field, mass transfer, and viscous dissipation have been taken into account. Both isothermal and adiabatic wall conditions have been considered. The governing equations have been solved numerically using a shooting method. The skin friction and heat transfer are found to be strongly affected by the magnetic field, mass transfer, wall temperature and Mach number. It is found that the magnetic field reduces the heat transfer. This is a significant result which can be used in controlling the heat transfer rate. The boundary layer solutions break down as the magnetic parameter tends to a certain critical value.
Resumo:
In this numerical study, the unsteady laminar incompressible boundary-layer flow over a continuously stretching surface has been investigated when the velocity of the stretching surface varies arbitrarily with time. Both the nodal and the saddle point regions of flow have been considered for the analysis. Also, constant wall temperature/concentration and constant heat/mass flux at the stretching surface have been taken into account. The quasilinearisation method with an implicit finite-difference scheme is used in the nodal point region (0 less-than-or-equal-to c less-than-or-equal-to 1) where c denotes the stretching ratio. This method fails in the saddle point region (-1 less-than-or-equal-to c less-than-or-equal-to 0) due to the occurrence of reverse flow in the y-component of velocity. In order to overcome this difficulty, the method of parametric differentiation with an implicit finite-difference scheme is used, where the values at c = 0 are taken as starting values. Results have been obtained for the stretching velocities which are accelerating and decelerating with time. Results show that the skin friction, the heat transfer and the mass transfer parameters respond significantly to the time dependent stretching velocities. Suction (A > 0) is found to be an important parameter in obtaining convergent solution in the case of the saddle point region of flow. The Prandtl number and the Schmidt number strongly affect the heat and mass transfer of the diffusing species, respectively.
Resumo:
The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wpropx lambda and surface injectionv Wpropx(lambda–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.
Resumo:
Analytical expressions which include depletion layer effects on low-injection carrier relaxation are being presented for the first time here. Starting from the continuity equation for the minority carriers, we derive expressions for the output signal pertinent to time-resolved microwave and luminescence experiments. These are valid for the time domain that usually overlaps with the time scales of surface processes, such as charge transfer and trapping. Apart from the usual pulse form of illumination, theoretical expressions pertaining to other forms of illumination such as switch-on and switch-off transient modes, a periodic mode, and a steady state and their various inter-relationships are derived here. The expressions obtained are seen to be generalizations of existing flat-band low-injection results in the Limit of early or initial band bendings. The importance of the depletion layer as an experimental parameter is clearly seen in the limit of larger band bendings wherein it is shown, unlike the flat-band case, to exhibit pure exponential forms of carrier relaxation. Our results are consistent with the main conclusions of the numerical and experimental work published recently. Furthermore, this work provides the actual functional relationships between the applied potential and observed carrier decay. This should enable one to extract the surface kinetic parameters, after deciding on the dominant mode of carrier relaxation at the interface, whether charge transfer or trapping, by studying the potential dependence of the fate of relaxation.
Resumo:
In the present investigation, Al 2024-15vol.%Al2O3 particulate (average size, 18 mu m) composites were fabricated using the liquid metallurgy route. The wear and friction characteristics of Al alloy 2024 and Al 2024-15vol.%Al2O3p, composite in the as-extruded and peak-aged conditions were studied using a pin-on-disc machine (with a steel disc as the counterface material). The worn surfaces, subsurfaces and the debris were analysed in a scanning electron microscope.The performance of the composite in the as-extruded condition is slightly inferior to that of the unreinforced alloy. However, in the T6 condition, although the wear rates of two materials are initially comparable, the unreinforced alloy seizes while the composite does not within the tested range employed. In the as-extruded condition, the presence of Al2O3 particles is not particularly beneficial as they fracture and result in extensive localized cracking and removal of material from the surface. In the peak-aged condition, however, while the unreinforced alloy exhibits severe plastic deformation and undergoes seizure, there is no significant change in the mechanism in the case of the composite. Except in the case of the peak-aged unreinforced alloy, worn surfaces of all other materials show the presence of an iron-rich layer.
Unsteady compressible boundary layer flow in the stagnation region of a sphere with a magnetic field
Resumo:
Abstract: An analysis is performed to study the unsteady compressible laminar boundary layer flow in the forward stagnation-point region of a sphere with a magnetic field applied normal, to the surface. We have considered the case where there is an initial steady state that is perturbed by the step change in the total enthalpy at the wall. The nonlinear coupled parabolic partial differential equations governing the flow and heat transfer have been solved numerically using a finite-difference scheme. The numerical results are presented, which show the temporal development of the boundary layer. The magnetic field in the presence of variable electrical conductivity causes an overshoot in the velocity profile. Also, when the total enthalpy at the wall is suddenly increased, there is a change in the direction of transfer of heat in a small interval of time.
Resumo:
The unsteady laminar boundary layer flow of an electrically conducting fluid past a semi-infinite flat plate with an aligned magnetic field has been studied when at time t > 0 the plate is impulsively moved with a constant velocity which is in the same or opposite direction to that of free stream velocity. The effect of the induced magnetic field has been included in the analysis. The non-linear partial differential equations have been solved numerically using an implicit finite-difference method. The effect of the impulsive motion of the surface is found to be more pronounced on the skin friction but its effect on the x-component of the induced magnetic field and heat transfer is small. Velocity defect occurs near the surface when the plate is impulsively moved in the same direction as that of the free stream velocity. The surface shear stress, x-component of the induced magnetic field on the surface and the surface heat transfer decrease with an increasing magnetic field, but they increase with the reciprocal of the magnetic Prandtl number. However, the effect of the reciprocal of the magnetic Prandtl number is more pronounced on the x-component of the induced magnetic field. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Some basic results that help in determining the Diversity-Multiplexing Tradeoff (DMT) of cooperative multihop networks are first identified. As examples, the maximum achievable diversity gain is shown to equal the min-cut between source and sink, whereas the maximal multiplexing gain is shown to equal the minimum rank of the matrix characterizing the MIMO channel appearing across a cut in the network. Two multi-hop generalizations of the two-hop network are then considered, namely layered networks as well as a class of networks introduced here and termed as K-parallel-path (KPP) networks. The DMT of KPP networks is characterized for K > 3. It is shown that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for fully-connected, layered networks. Explicit coding schemes achieving the DMT that make use of cyclic-division-algebra-based distributed space-time codes underlie the above results. Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple, amplify-and-forward protocols are often sufficient to attain the optimal DMT.
Resumo:
A systematic approach is developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. The problem formulation and description of boundary conditions are kept fairly general, so that a large class of problems can be addressed. Analysis of the momentum equations coupled with phase change considerations leads to the establishment of an advection velocity scale. Analysis of the energy equation leads to an estimation of the solid layer thickness. Different regimes corresponding to different dominant modes of transport are simultaneously identified. A comparative study involving several cases of possible thermal boundary conditions is also performed. Finally, a scaling analysis of the species conservation equation is carried out, revealing the effect of a non-equilibrium solidification model on solute segregation and species distribution. It is shown that non-equilibrium effects result in an enhanced macrosegregation compared with the case of an equilibrium model. For the sake of assessment of the scaling analysis, the predictions are validated against corresponding computational results.
Resumo:
An unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid over a rotating infinite disk in an otherwise ambient fluid are studied. The unsteadiness in the flow field is caused by the angular velocity of the disk which varies with time. The magnetic field is applied normal to the disk surface. The new self-similar solution of the Navier-Stokes and energy equations is obtained numerically. The solution obtained here is not only the solution of the Navier-Stokes equations, but also of the boundary layer equations. Also, for a simple scaling factor, it represents the solution of the flow and heat transfer in the forward stagnation-point region of a rotating sphere or over a rotating cone. The asymptotic behaviour of the solution for a large magnetic field or for a large independent variable is also examined. The surface shear stresses in the radial and tangential directions and the surface heat transfer increase as the acceleration parameter increases. Also the surface shear stress in the radial direction and the surface heat transfer decrease with increasing magnetic field, but the surface shear stress in the tangential direction increases. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
Resumo:
The present work combines two rapidly growing research areas-functional supramolecular gels and lanthanide based hybrid materials. Facile hydrogel formation from several lanthanide(III) cholates has been demonstrated. The morphological and mechanical properties of these cholate gels were investigated by TEM and rheology. The hydrogel matrix was subsequently utilized for the sensitization of Tb(III) by doping a non-coordinating chromophore, 2,3-dihydroxynaphthalene (DHN), at micromolar concentrations. In the mixed gels of Tb(III)-Eu(III), an energy transfer pathway was found to operate from Tb(III) to Eu(III) and by utilizing this energy transfer, tunable multiple-color luminescent hydrogels were obtained. The emissive properties of the hydrogels were also retained in the xerogels and their suspensions in n-hexane were used for making luminescent coating on glass surface.
Resumo:
We consider single-source single-sink (ss-ss) multi-hop relay networks, with slow-fading links and single-antenna half-duplex relay nodes. While two-hop cooperative relay networks have been studied in great detail in terms of the diversity-multiplexing tradeoff (DMT), few results are available for more general networks. In this paper, we identify two families of networks that are multi-hop generalizations of the two-hop network: K-Parallel-Path (KPP)networks and layered networks.KPP networks, can be viewed as the union of K node-disjoint parallel relaying paths, each of length greater than one. KPP networks are then generalized to KPP(I) networks, which permit interference between paths and to KPP(D) networks, which possess a direct link from source to sink. We characterize the DMT of these families of networks completely for K > 3. Layered networks are networks comprising of layers of relays with edges existing only between adjacent layers, with more than one relay in each layer. We prove that a linear DMT between the maximum diversity dmax and the maximum multiplexing gain of 1 is achievable for single-antenna fully-connected layered networks. This is shown to be equal to the optimal DMT if the number of relaying layers is less than 4.For multiple-antenna KPP and layered networks, we provide an achievable DMT, which is significantly better than known lower bounds for half duplex networks.For arbitrary multi-terminal wireless networks with multiple source-sink pairs, the maximum achievable diversity is shown to be equal to the min-cut between the corresponding source and the sink, irrespective of whether the network has half-duplex or full-duplex relays. For arbitrary ss-ss single-antenna directed acyclic networks with full-duplex relays, we prove that a linear tradeoff between maximum diversity and maximum multiplexing gain is achievable.Along the way, we derive the optimal DMT of a generalized parallel channel and derive lower bounds for the DMT of triangular channel matrices, which are useful in DMT computation of various protocols. We also give alternative and often simpler proofs of several existing results and show that codes achieving full diversity on a MIMO Rayleigh fading channel achieve full diversity on arbitrary fading channels. All protocols in this paper are explicit and use only amplify-and-forward (AF) relaying. We also construct codes with short block-lengths based on cyclic division algebras that achieve the optimal DMT for all the proposed schemes.Two key implications of the results in the paper are that the half-duplex constraint does not entail any rate loss for a large class of cooperative networks and that simple AF protocols are often sufficient to attain the optimal DMT
Resumo:
In this article we study the problem of joint congestion control, routing and MAC layer scheduling in multi-hop wireless mesh network, where the nodes in the network are subjected to maximum energy expenditure rates. We model link contention in the wireless network using the contention graph and we model energy expenditure rate constraint of nodes using the energy expenditure rate matrix. We formulate the problem as an aggregate utility maximization problem and apply duality theory in order to decompose the problem into two sub-problems namely, network layer routing and congestion control problem and MAC layer scheduling problem. The source adjusts its rate based on the cost of the least cost path to the destination where the cost of the path includes not only the prices of the links in it but also the prices associated with the nodes on the path. The MAC layer scheduling of the links is carried out based on the prices of the links. We study the e�ects of energy expenditure rate constraints of the nodes on the optimal throughput of the network.