866 resultados para modeling of data sources


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shade plots, simple visual representations of abundance matrices from multivariate species assemblage studies, are shown to be an effective aid in choosing an overall transformation (or other pre-treatment) of quantitative data for long-term use, striking an appropriate balance between dominant and less abundant taxa in ensuing resemblance-based multivariate analyses. Though the exposition is entirely general and applicable to all community studies, detailed illustrations of the comparative power and interpretative possibilities of shade plots are given in the case of two estuarine assemblage studies in south-western Australia: (a) macrobenthos in the upper Swan Estuary over a two-year period covering a highly significant precipitation event for the Perth area; and (b) a wide-scale spatial study of the nearshore fish fauna from five divergent estuaries. The utility of transformations of intermediate severity is again demonstrated and, with greater novelty, the potential importance seen of further mild transformation of all data after differential down-weighting (dispersion weighting) of spatially clumped' or schooled' species. Among the new techniques utilized is a two-way form of the RELATE test, which demonstrates linking of assemblage structure (fish) to continuous environmental variables (water quality), having removed a categorical factor (estuary differences). Re-orderings of sample and species axes in the associated shade plots are seen to provide transparent explanations at the species level for such continuous multivariate patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between heat-treatment parameters and microstructure in titanium alloys has so far been mainly studied empirically, using characterization techniques such as microscopy. Calculation and modeling of the kinetics of phase transformation have not yet been widely used for these alloys. Differential scanning calorimetry (DSC) has been widely used for the study of a variety of phase transformations. There has been much work done on the calculation and modeling of the kinetics of phase transformations for different systems based on the results from DSC study. In the present work, the kinetics of the transformation in a Ti-6Al-4V titanium alloy were studied using DSC, at continuous cooling conditions with constant cooling rates of 5 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C/min. The results from calorimetry were then used to trace and model the transformation kinetics in continuous cooling conditions. Based on suitably interpreted DSC results, continuous cooling–transformation (CCT) diagrams were calculated with lines of isotransformed fraction. The kinetics of transformation were modeled using the Johnson–Mehl–Avrami (JMA) theory and by applying the "concept of additivity." The JMA kinetic parameters were derived. Good agreement between the calculated and experimental transformed fractions is demonstrated. Using the derived kinetic parameters, the transformation in a Ti-6Al-4V alloy can be described for any cooling path and condition. An interpretation of the results from the point of view of activation energy for nucleation is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter reports the statistical characterization and modeling of the indoor radio channel for a mobile wireless personal area network operating at 868 MHz. Line of sight (LOS) and non-LOS conditions were considered for three environments: anechoic chamber, open office area and hallway. Overall, the Nakagami-m cdf best described fading for bodyworn operation in 60% of all measured channels in anechoic chamber and open office area environments. The Nakagami distribution was also found to provide a good description of Rician distributed channels which predominated in the hallway. Multipath played an important role in channel statistics with the mean recorded m value being reduced from 7.8 in the anechoic chamber to 1.3 in both the open office area and hallway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an efficient. modeling technique for the derivation of the dispersion characteristics of novel uniplanar metallodielectric periodic structures. The analysis is based on the method of moments and an interpolation scheme, which significantly accelerates the computations. Triangular basis functions are used that allow for modeling of arbitrary shaped metallic elements. Based on this method, novel uniplanar left-handed (LH) metamaterials are proposed. Variations of the split rectangular-loop element printed on grounded dielectric substrate are demonstrated to possess LH propagation properties. Full-wave dispersion curves are presented. Based on the dual transmission-line concept, we study the distribution of the modal fields And the variation of series capacitance and shunt inductance for all the proposed elements. A verification of the left-handedness is presented by means of full-wave simulation of finite uniplanar arrays using commercial software (HFSS). The cell dimensions are a small fraction of the wavelength (approximately lambda/24) so that the structures can he considered as a homogeneous effective medium. The structures are simple, readily scalable to higher frequencies, and compatible with low-cost fabrication techniques.