986 resultados para milk energy
Resumo:
For the first time, the impact of energy quantisation in single electron transistor (SET) island on the performance of hybrid complementary metal oxide semiconductor (CMOS)-SET transistor circuits has been studied. It has been shown through simple analytical models that energy quantisation primarily increases the Coulomb Blockade area and Coulomb Blockade oscillation periodicity of the SET device and thus influences the performance of hybrid CMOS-SET circuits. A novel computer aided design (CAD) framework has been developed for hybrid CMOS-SET co-simulation, which uses Monte Carlo (MC) simulator for SET devices along with conventional SPICE for metal oxide semiconductor devices. Using this co-simulation framework, the effects of energy quantisation have been studied for some hybrid circuits, namely, SETMOS, multiband voltage filter and multiple valued logic circuits. Although energy quantisation immensely deteriorates the performance of the hybrid circuits, it has been shown that the performance degradation because of energy quantisation can be compensated by properly tuning the bias current of the current-biased SET devices within the hybrid CMOS-SET circuits. Although this study is primarily done by exhaustive MC simulation, effort has also been put to develop first-order compact model for SET that includes energy quantisation effects. Finally, it has been demonstrated that one can predict the SET behaviour under energy quantisation with reasonable accuracy by slightly modifying the existing SET compact models that are valid for metallic devices having continuous energy states.
Resumo:
This paper proposes a hybrid solar cooking system where the solar energy is transported to the kitchen. The thermal energy source is used to supplement the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. Solar energy is transferred to the kitchen by means of a circulating fluid. Energy collected from sun is maximized by changing the flow rate dynamically. This paper proposes a concept of maximum power point tracking (MPPT) for the solar thermal collector. The diameter of the pipe is selected to optimize the overall energy transfer. Design and sizing of different components of the system are explained. Concept of MPPT is validated with simulation and experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Hollow atoms in which the K shell is empty while the outer shells are populated allow studying a variety of important and unusual properties of atoms. The diagram x-ray emission lines of such atoms, the K-h alpha(1,2) hypersatellites (HSs), were measured for the 3d transition metals, Z=23-30, with a high energy resolution using photoexcitation by monochromatized synchrotron radiation. Good agreement with ab initio relativistic multiconfigurational Dirac-Fock calculations was found. The measured HS intensity variation with the excitation energy yields accurate values for the excitation thresholds, excludes contributions from shake-up processes, and indicates domination near threshold of a nonshake process. The Z variation of the HS shifts from the diagram line K alpha(1,2), the K-h alpha(1)-K-h alpha(2) splitting, and the K-h alpha(1)/K-h alpha(2) intensity ratio, derived from the measurements, are also discussed with a particular emphasis on the QED corrections and Breit interaction.
Resumo:
Although it is believed that there is strong hybridization between the Cu(3d) and O(2p) orbitals in the layered cuprates and that the parent compounds such as La2CuO4 are charge-transfer gap insulators, very few models consider the Cu---O charge-transfer energy, Δ, or the hybridization strength, tpd, to be the important factors responsible for the superconductivity of these materials. Based on the crucial experimental observation that the relative intensity of the features in Cu(2p) photoemission of several families of cuprates varies systematically with the hole concentration, nh, we have been able to show that both these properties vary smoothly with Δ /tpd. More importantly, we show that the electronic polarizability of the CuO2 sheets, α , is sufficiently large to favour hole pairing and that the value α also depends on Δ/tpd. Both nh and α increase smoothly with decreasing Δ /tpd. Considering that the maximum Tc in the various cuprate families containing the same number of CuO2 sheets occurs around the same nh value (e.g., nh≈ 0.2 in cuprates with two CuO2 sheets). The present study demonstrates how Δ /tpd, α and such chemical bonding characteristics have an important bearing on the superconducting properties of the cuprates.
Resumo:
The influence of stacking fault energy (SFE) on the mechanism of dynamic recrystallization (DRX) during hot deformation of FCC metals is examined in the light of results from the power dissipation maps. The DRX domain for high SFE metals like Al and Ni occurred at homologous temperature below 0·7 and strain rates of 0·001 s−1 while for low SFE metals like Cu and Pb the corresponding values are higher than 0·8 and 100 s−1. The peak efficiencies of power dissipation are 50% and below 40% respectively. A simple model which considers the rate of interface formation (nucleation) involving dislocation generation and simultaneous recovery and the rate of interface migration (growth) occurring with the reduction in interface energy as the driving force, has been proposed to account for the effect of SFE on DRX. The calculations reveal that in high SFE metals, interface migration controls DRX while the interface formation is the controlling factor in low SFE metals. In the latter case, the occurrence of flow softening and oscillations could be accounted for by this model.
Resumo:
The Madelung energy of YBa2Cu4O8 has been computed for different locations of the hole in the structure. The lowest-energy configuration corresponds to partial localization of the hole on O(1) and O(11) sites.
Resumo:
In receive antenna selection (AS), only signals from a subset of the antennas are processed at any time by the limited number of radio frequency (RF) chains available at the receiver. Hence, the transmitter needs to send pilots multiple times to enable the receiver to estimate the channel state of all the antennas and select the best subset. Conventionally, the sensitivity of coherent reception to channel estimation errors has been tackled by boosting the energy allocated to all pilots to ensure accurate channel estimates for all antennas. Energy for pilots received by unselected antennas is mostly wasted, especially since the selection process is robust to estimation errors. In this paper, we propose a novel training method uniquely tailored for AS that transmits one extra pilot symbol that generates accurate channel estimates for the antenna subset that actually receives data. Consequently, the transmitter can selectively boost the energy allocated to the extra pilot. We derive closed-form expressions for the proposed scheme's symbol error probability for MPSK and MQAM, and optimize the energy allocated to pilot and data symbols. Through an insightful asymptotic analysis, we show that the optimal solution achieves full diversity and is better than the conventional method.
Resumo:
We propose a method to compute a probably approximately correct (PAC) normalized histogram of observations with a refresh rate of Theta(1) time units per histogram sample on a random geometric graph with noise-free links. The delay in computation is Theta(root n) time units. We further extend our approach to a network with noisy links. While the refresh rate remains Theta(1) time units per sample, the delay increases to Theta(root n log n). The number of transmissions in both cases is Theta(n) per histogram sample. The achieved Theta(1) refresh rate for PAC histogram computation is a significant improvement over the refresh rate of Theta(1/log n) for histogram computation in noiseless networks. We achieve this by operating in the supercritical thermodynamic regime where large pathways for communication build up, but the network may have more than one component. The largest component however will have an arbitrarily large fraction of nodes in order to enable approximate computation of the histogram to the desired level of accuracy. Operation in the supercritical thermodynamic regime also reduces energy consumption. A key step in the proof of our achievability result is the construction of a connected component having bounded degree and any desired fraction of nodes. This construction may also prove useful in other communication settings on the random geometric graph.
Resumo:
In the recent years. India has emerged as one of the fast growing economies of the world necessitating equally rapid increase in modern energy consumption. With an imminent global climate change threat, India will have difficulties in continuing with this rising energy use levels towards achieving high economic growth. It will have to follow an energy-efficient pathway in attaining this goal. In this context, an attempt is made to present India's achievements on the energy efficiency front by tracing the evolution of policies and their impacts. The results indicate that India has made substantial progress in improving energy efficiency which is evident from the reductions achieved in energy intensities of GDP to the tune of 88% during 1980-2007. Similar reductions have been observed both with respect to overall Indian economy and the major sectors of the economy. In terms of energy intensity of GDP, India occupies a relatively high position of nine among the top 30 energy consuming countries of the world. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
An asymmetric binary search switching technique for a successive approximation register (SAR) ADC is presented, and trade-off between switching energy and conversion cycles is discussed. Without using any additional switches, the proposed technique consumes 46% less switching energy, for a small input swing (0.5 V-ref (P-P)), as compared to the last reported efficient switching technique in literature for an 8-bit SAR ADC. For a full input swing (2 V-ref (P-P)), the proposed technique consumes 16.5% less switching energy.
Resumo:
Cow s milk allergy (CMA) affects about 2-6% of infants and young children. Environmental factors during early life are suggested to play a role in the development of allergic diseases. One of these factors is likely to be maternal diet during pregnancy and lactation. The association between maternal diet and development of CMA in offspring is not well known, but diet could contain factors that facilitate development of tolerance. After an established food allergy, another issue is gaining tolerance towards an antigen that causes symptoms. The strictness of the elimination depends on the individual level of tolerance. This study aimed at validating a questionnaire used to inquire about food allergies in children, at researching associations between maternal diet during pregnancy and lactation and subsequent development of cow s milk allergy in the offspring, and at evaluating the degree of adherence to a therapeutic elimination diet of children with CMA and factors associated with the adherence and age of recovery. These research questions were addressed in a prospective birth cohort born between 1997 and 2004 at the Tampere and Oulu University Hospitals. Altogether 6753 children of the Diabetes Prediction and Prevention (DIPP) Nutrition cohort were investigated. Questionnaires regarding allergic diseases are often used in studies without validation. High-quality valid tools are therefore needed. Two validation studies were conducted here: one by comparing parentally reported food allergies with information gathered from patient records of 1122 children, and the other one by comparing parentally reported CMA with information in the reimbursement records of special infant formulae in the registers of the Social Insurance Institution for 6753 children. Both of these studies showed that the questionnaire works well and is a valid tool for measuring food allergies in children. In the first validation study, Cohen s kappa values were within 0.71-0.88 for CMA, 0.74-0.82 for cereal allergy, and 0.66-0.86 for any reported food allergy. In the second validation study, the kappa value was 0.79, sensitivity 0.958, and specificity 0.965 for reported and diagnosed CMA. To investigate the associations between maternal diet during pregnancy and lactation and CMA in offspring, 6288 children were studied. Maternal diet during pregnancy (8th month) and lactation (3rd month) was assessed by a validated, 181-item semi-quantitative food frequency questionnaire (FFQ), and as an endpoint register-based information on diagnosed CMA was obtained from the Social Insurance Institution and complemented with parental reports of CMA in their children. The associations between maternal food consumption and CMA in offspring were analyzed by logistic regression comparing the highest and lowest quarters with two middle quarters of consumption and adjusted for several potential confounding factors. High maternal intake of milk products (OR 0.56, 95% CI 0.37-0.86 p = 0.002) was associated with a lower risk of CMA in offspring. When stratified according to maternal allergic rhinitis or asthma, a protective association of high use of milk products with CMA was seen in children of allergy-free mothers (OR 0.30, 95% CI 0.13 - 0.69, p < 0.001), but not in children of allergic mothers. Moreover, low maternal consumption of fish during pregnancy was associated with a higher risk of CMA in children of mothers with allergic rhinitis or asthma (OR 1.47, 95% CI 0.96 - 2.27 for the lowest quarter, p = 0.043). In children of nonallergic mothers, this association was not seen. Maternal diet during lactation was not associated with CMA in offspring, apart from an inverse association between citrus and kiwi fruit consumption and CMA. These results imply that maternal diet during pregnancy may contain factors protective against CMA in offspring, more so than maternal diet during lactation. These results need to be confirmed in other studies before giving recommendations to the public. To evaluate the degree of adherence to a therapeutic elimination diet in children with diagnosed CMA, food records of 267 children were studied. Subsequent food records were examined to assess the age at reintroduction of milk products to the child s diet. Nine of ten families adhered to the elimination diet of the child with extreme accuracy. Older and monosensitized children had more often small amounts of cow s milk protein in their diet (p < 0.001 for both). Adherence to the diet was not related to any other sociodemographic factor studied or to the age at reintroduction of milk products to the diet. Low intakes of vitamin D, calcium, and riboflavin are of concern in children following a cow s milk-free diet. In summary, we found that the questionnaires used in the DIPP study are valid in investigating CMA in young children; that there are associations between maternal diet during pregnancy and lactation and the development of CMA in offspring; and that the therapeutic elimination diet in children with diagnosed CMA is rigorously adhered to.
Resumo:
Head-on infall of two compact objects with arbitrary mass ratio is investigated using the multipolar post-Minkowskian approximation method. At the third post-Newtonian order the energy flux, in addition to the instantaneous contributions, also includes hereditary contributions consisting of the gravitational-wave tails, tails-of-tails, and the tail-squared terms. The results are given both for infall from infinity and also for infall from a finite distance. These analytical expressions should be useful for the comparison with the high accuracy numerical relativity results within the limit in which post-Newtonian approximations are valid.