947 resultados para method comparison
Resumo:
Finite element hp-adaptivity is a technology that allows for very accurate numerical solutions. When applied to open region problems such as radar cross section prediction or antenna analysis, a mesh truncation method needs to be used. This paper compares the following mesh truncation methods in the context of hp-adaptive methods: Infinite Elements, Perfectly Matched Layers and an iterative boundary element based methodology. These methods have been selected because they are exact at the continuous level (a desirable feature required by the extreme accuracy delivered by the hp-adaptive strategy) and they are easy to integrate with the logic of hp-adaptivity. The comparison is mainly based on the number of degrees of freedom needed for each method to achieve a given level of accuracy. Computational times are also included. Two-dimensional examples are used, but the conclusions directly extrapolated to the three dimensional case.
Resumo:
In this paper, a new linear method for optimizing compact low noise oscillators for RF/MW applications will be presented. The first part of this paper makes an overview of Leeson's model. It is pointed out, and it is demonstrates that the phase noise is always the same inside the oscillator loop. It is presented a general phase noise optimization method for reference plane oscillators. The new method uses Transpose Return Relations (RRT) as true loop gain functions for obtaining the optimum values of the elements of the oscillator, whatever scheme it has. With this method, oscillator topologies that have been designed and optimized using negative resistance, negative conductance or reflection coefficient methods, until now, can be studied like a loop gain method. Subsequently, the main disadvantage of Leeson's model is overcome, and now it is not only valid for loop gain methods, but it is valid for any oscillator topology. The last section of this paper lists the steps to be performed to use this method for proper phase noise optimization during the linear design process and before the final non-linear optimization. The power of the proposed RRT method is shown with its use for optimizing a common oscillator, which is later simulated using Harmonic Balance (HB) and manufactured. Then, the comparison of the linear, HB and measurements of the phase noise are compared.
Resumo:
The purpose of this study is to determine the stress distribution in the carpentry joint of halved and tabled scarf joint with the finite element method (FEM) and its comparison with the values obtained using the theory of Strength of Materials. The stress concentration areas where analyzed and the influence of mesh refinement was studied on the results in order to determine the mesh size that provides the stress values more consistent with the theory. In areas where stress concentration is lower, different mesh sizes show similar stress values. In areas where stress concentration occurs, the same values increase considerably with the refinement of the mesh. The results show a central symmetry of the isobar lines distribution where the centre of symmetry corresponds to the geometric centre of the joint. Comparison of normal stress levels obtained by the FEM and the classical theory shows small differences, except at points of stress concentration.
Resumo:
In order to achieve total selectivity at electrical distribution networks it is of great importance to analyze the defect currents at ungrounded power systems. This information will help to grant selectivity at electrical distribution networks ensuring that only the defect line or feeder is removed from service. In the present work a new selective and directional protection method for ungrounded power systems is evaluated. The new method measures only defect currents to detect earth faults and works with a directional criterion to determine the line under faulty conditions. The main contribution of this new technique is that it can detect earth faults in outgoing lines at any type of substation avoiding the possible mismatch of traditional directional earth fault relays. This detection technique is based on the comparison of the direction of a reference current to the direction of all earth fault capacitive currents at all the feeders connected to the same bus bars. This new method has been validated through computer simulations. The results for the different cases studied are remarkable, proving total validity and usefulness of the new method.
Resumo:
Ion beam therapy is a valuable method for the treatment of deep-seated and radio-resistant tumors thanks to the favorable depth-dose distribution characterized by the Bragg peak. Hadrontherapy facilities take advantage of the specific ion range, resulting in a highly conformal dose in the target volume, while the dose in critical organs is reduced as compared to photon therapy. The necessity to monitor the delivery precision, i.e. the ion range, is unquestionable, thus different approaches have been investigated, such as the detection of prompt photons or annihilation photons of positron emitter nuclei created during the therapeutic treatment. Based on the measurement of the induced β+ activity, our group has developed various in-beam PET prototypes: the one under test is composed by two planar detector heads, each one consisting of four modules with a total active area of 10 × 10 cm2. A single detector module is made of a LYSO crystal matrix coupled to a position sensitive photomultiplier and is read-out by dedicated frontend electronics. A preliminary data taking was performed at the Italian National Centre for Oncological Hadron Therapy (CNAO, Pavia), using proton beams in the energy range of 93–112 MeV impinging on a plastic phantom. The measured activity profiles are presented and compared with the simulated ones based on the Monte Carlo FLUKA package.
Resumo:
The applicability of a portable NIR spectrometer for estimating the °Brix content of grapes by non-destructive measurement has been analysed in field. The NIR spectrometer AOTF-NIR Luminar 5030, from Brimrose, was used. The spectrometer worked with a spectral range from 1100 to 2300 nm. A total of 600 samples of Cabernet Sauvignon grapes, belonging to two vintages, were measured in a non-destructive way. The specific objective of this research is to analyse the influence of the statistical treatment of the spectra information in the development of °Brix estimation models. Different data pretreatments have been tested before applying multivariate analysis techniques to generate estimation models. The calibration using PLS regression applied to spectra data pretreated with the MSC method (multiplicative scatter correction) has been the procedure with better results. Considering the models developed with data corresponding to the first campaign, errors near to 1.35 °Brix for calibration (SEC = 1.36) and, about 1.50 °Brix for validation (SECV = 1.52) were obtained. The coefficients of determination were R2 = 0.78 for the calibration, and R2 = 0.77 for the validation. In addition, the great variability in the data of the °Brix content for the tested plots was analysed. The variation of °Brix on the plots was up to 4 °Brix, for all varieties. This deviation was always superior to the calculated errors in the generated models. Therefore, the generated models can be considered to be valid for its application in field. Models were validated with data corresponding to the second campaign. In this sense, the validation results were worse than those obtained in the first campaign. It is possible to conclude in the need to realize an adjustment of the spectrometer for each season, and to develop specific predictive models for every vineyard.
Resumo:
Measuring skin temperature (TSK) provides important information about the complex thermal control system and could be interesting when carrying out studies about thermoregulation. The most common method to record TSK involves thermocouples at specific locations; however, the use of infrared thermal imaging (IRT) has increased. The two methods use different physical processes to measure TSK, and each has advantages and disadvantages. Therefore, the objective of this study was to compare the mean skin temperature (MTSK) measurements using thermocouples and IRT in three different situations: pre-exercise, exercise and post-exercise. Analysis of the residual scores in Bland-Altman plots showed poor agreement between the MTSK obtained using thermocouples and those using IRT. The averaged error was -0.75 °C during pre-exercise, 1.22 °C during exercise and -1.16 °C during post-exercise, and the reliability between the methods was low in the pre- (ICC = 0.75 [0.12 to 0.93]), during (ICC = 0.49 [-0.80 to 0.85]) and post-exercise (ICC = 0.35 [-1.22 to 0.81] conditions. Thus, there is poor correlation between the values of MTSK measured by thermocouples and IRT pre-exercise, exercise and post-exercise, and low reliability between the two forms of measurement.
Resumo:
Previous work of the research group [1-4] demonstrated the viability of using periodic lattices of micro and nanopillars, called Bio-photonic sensing Cells (BICELLs), as an optical biosensor vertically characterized by visible spectrometry. Also we have studied theoretically [5] the performance of the BICELLs by 2D and 3D simulation in orde r to optimize the biosensing response. In this work we present the fabrication and biosensing comparison of different geometrical parameters on periodic lattices of pillars in order to discuss theoretical conclusions with these results. In this way, we have explored the biosensing response of other patter ns such as crosses, stars, cylinders, concentrical cylinders (Figure 1). Also we introduced a novel method to test the BICELLs in a cost-effective way by using an ultra-thin film of SU-8 spin-coated onto the patterns to reproduce the effect of a biofilm attached to the biosensor surface. Finally we have tested the biosensing response of the different geometries by the well-known Bovine Serum Albumin (BSA) immunoassay and compared with the theoretical simulation.
Resumo:
Palm juice (Borassus flabellifer) is one of the most common and cheap natural juices. Fermented palm juice contains various phytochemical compounds that exhibit antioxidant activity. In the present study, we examined the effects of pH on the production of phytochemicals and their antioxidant activity during the fermentation process. The concentration of total phenolics and flavonoid compounds of fermented palm juice and their antioxidant activity were investigated at various pH. The results showed that total phenolics concentration and antioxidant activity of palm wine and palm vinegar increase as pH increases: 3.54.55.5. Maximum flavonoid concentration was obtained at pH 6.5. Measurements of antioxidant activity by conventional DPPH method and Photochem antioxidant analyzer technique were highly correlated, with a corresponding R2 value of 0.94.
Resumo:
The design and development of a new method for performing fracture toughness tests under impulsive loadings using explosives is presented. The experimental set-up was complemented with pressure transducers and strain gauges in order to measure, respectively, the blast wave that reached the specimen and the loading history. Fracture toughness tests on a 7017-T73 aluminium alloy were carried out by using this device under impulsive loadings. Previous studies reported that such aluminium alloy had very little strain rate sensitivity, which made it an ideal candidate for comparison at different loading rates. The fracture-initiation toughness values of the 7017-T73 aluminium alloy obtained at impulsive loadings did not exhibit a significant variation from the cases studied at lower loading rates. Therefore, the method and device developed for measuring the dynamic fracture-initiation toughness under impulsive loadings was considered suitable for such a purpose
Resumo:
The purpose of this study was to compare a number of state-of-the-art methods in airborne laser scan- ning (ALS) remote sensing with regards to their capacity to describe tree size inequality and other indi- cators related to forest structure. The indicators chosen were based on the analysis of the Lorenz curve: Gini coefficient ( GC ), Lorenz asymmetry ( LA ), the proportions of basal area ( BALM ) and stem density ( NSLM ) stocked above the mean quadratic diameter. Each method belonged to one of these estimation strategies: (A) estimating indicators directly; (B) estimating the whole Lorenz curve; or (C) estimating a complete tree list. Across these strategies, the most popular statistical methods for area-based approach (ABA) were used: regression, random forest (RF), and nearest neighbour imputation. The latter included distance metrics based on either RF (NN–RF) or most similar neighbour (MSN). In the case of tree list esti- mation, methods based on individual tree detection (ITD) and semi-ITD, both combined with MSN impu- tation, were also studied. The most accurate method was direct estimation by best subset regression, which obtained the lowest cross-validated coefficients of variation of their root mean squared error CV(RMSE) for most indicators: GC (16.80%), LA (8.76%), BALM (8.80%) and NSLM (14.60%). Similar figures [CV(RMSE) 16.09%, 10.49%, 10.93% and 14.07%, respectively] were obtained by MSN imputation of tree lists by ABA, a method that also showed a number of additional advantages, such as better distributing the residual variance along the predictive range. In light of our results, ITD approaches may be clearly inferior to ABA with regards to describing the structural properties related to tree size inequality in for- ested areas.
Resumo:
The aim of this study was to compare the race characteristics of the start and turn segments of national and regional level swimmers. In the study, 100 and 200-m events were analysed during the finals session of the Open Comunidad de Madrid (Spain) tournament. The “individualized-distance” method with two-dimensional direct linear transformation algorithm was used to perform race analyses. National level swimmers obtained faster velocities in all race segments and stroke comparisons,although significant inter-level differences in start velocity were only obtained in half (8 out of 16) of the analysed events. Higher level swimmers also travelled for longer start and turn distances but only in the race segments where the gain of speed was high. This was observed in the turn segments, in the backstroke and butterfly strokes and during the 200-m breaststroke event, but not in any of the freestyle events. Time improvements due to the appropriate extension of the underwater subsections appeared to be critical for the end race result and should be carefully evaluated by the “individualized-distance” method.
Resumo:
A series of motion compensation algorithms is run on the challenge data including methods that optimize only a linear transformation, or a non-linear transformation, or both – first a linear and then a non-linear transformation. Methods that optimize a linear transformation run an initial segmentation of the area of interest around the left myocardium by means of an independent component analysis (ICA) (ICA-*). Methods that optimize non-linear transformations may run directly on the full images, or after linear registration. Non-linear motion compensation approaches applied include one method that only registers pairs of images in temporal succession (SERIAL), one method that registers all image to one common reference (AllToOne), one method that was designed to exploit quasi-periodicity in free breathing acquired image data and was adapted to also be usable to image data acquired with initial breath-hold (QUASI-P), a method that uses ICA to identify the motion and eliminate it (ICA-SP), and a method that relies on the estimation of a pseudo ground truth (PG) to guide the motion compensation.
Resumo:
This paper presents a dynamic LM adaptation based on the topic that has been identified on a speech segment. We use LSA and the given topic labels in the training dataset to obtain and use the topic models. We propose a dynamic language model adaptation to improve the recognition performance in "a two stages" AST system. The final stage makes use of the topic identification with two variants: the first on uses just the most probable topic and the other one depends on the relative distances of the topics that have been identified. We perform the adaptation of the LM as a linear interpolation between a background model and topic-based LM. The interpolation weight id dynamically adapted according to different parameters. The proposed method is evaluated on the Spanish partition of the EPPS speech database. We achieved a relative reduction in WER of 11.13% over the baseline system which uses a single blackground LM.
Resumo:
Comparación de los esquemas de integración temporal explícito e implícito, en la simulación del flujo sanguíneo y su interacción con la pared arterial. There are two major strategies in FSI coupling techniques: implicit and explicit. The general difference between these methodologies is how many times the data is exchanged between the fluid and solid domains at each FSI time-step. In both coupling strategies, the pressure values coming from fluid domain calculations at each time-step are exported to the solid domain, and consequently, the solid domain is analyzed with these imported forces. In contrast to the explicit coupling, in the implicit approach the fluid and solid domain’s data is exchanged several times until the convergence is achieved. Although this method may boost the numerical stabilization, it increases the computational cost due to the extra data exchanges. In cardiovascular simulations, depending on the analysis objectives, one may choose an explicit or implicit approach. In the current work, the advantage of an explicit coupling strategy is highlighted when simulation of pulsatile blood flow in elastic arteries is desired.