885 resultados para metallic tantalum
Resumo:
The environmental impacts of a single mine often remain local, but acidic and metal-rich acid mine drainage (AMD) from the waste materials may pose a serious threat to adjacent surface waters and their ecosystems. Testate amoebae (thecamoebian) analysis was used together with lake sediment geochemistry to study and evaluate the ecological effects of sulphidic metal mines on aquatic environments. Three different mines were included in the study: Luikonlahti Cu-mine in Kaavi, eastern Finland, Haveri Cu-Au mine in Ylöjärvi, southern Finland and Pyhäsalmi Zn-Cu-S mine in Pyhäjärvi, central Finland. Luikonlahti and Haveri are closed mines, but Pyhäsalmi is still operating. The sampling strategy was case specific, and planned to provide a representative sediment sample series to define natural background conditions, to detect spatial and temporal variations in mine impacts, to evaluate the possible recovery after the peak contamination, and to distinguish the effects of other environmental factors from the mining impacts. In the Haveri case, diatom analyses were performed alongside thecamoebian analysis to evaluate the similarities and differences between the two proxies. The results of the analyses were investigated with multivariate methods (direct and indirect ordinations, diversity and distance measure indices). Finally, the results of each case study were harmonized, pooled, and jointly analyzed to summarize the results for this dissertation. Geochemical results showed broadly similar temporal patterns in each case. Concentrations of ions in the pre-disturbance samples defined the natural baseline against which other results were compared. The beginning of the mining activities had only minor impacts on sediment geochemistry, mainly appearing as an increased clastic input into the lakes at Haveri and Pyhäsalmi. The active mining phase was followed by the metallic contamination and, subsequently, by the most recent change towards decreased but still elevated metal concentrations in the sediments. Because of the delay in the oxidation of waste material and formation of AMD, the most intense, but transient metal contamination phase occurred in the post-mining period at Luikonlahti and Haveri. At Pyhäsalmi, the highest metal contamination preceded effluent mitigation actions. Spatial gradients were observed besides the temporal evolution in both the pre-disturbance and mine-impacted samples from Luikonlahti and Pyhäsalmi. The geochemical gradients varied with distance from the main source of contaminants (dispersion and dilution) and with water depth (redox and pH). The spatial extent of the highest metal contamination associated with these mines remained rather limited. At Haveri, the metallic impact was widespread, with the upstream site in another lake basin found to be contaminated. Changes in thecamoebian assemblages corresponded well with the geochemical results. Despite some differences, the general features and ecological responses of the faunal assemblages were rather similar in each lake. Constantly abundant strains of Difflugia oblonga, Difflugia protaeiformis and centropyxids formed the core of these assemblages. Increasing proportions of Cucurbitella tricuspis towards the surface samples were found in all of the cases. The results affirmed the indicator value of some already known indicator forms, but such as C. tricuspis and higher nutrient levels, but also elicited possible new ones such as D. oblonga ‘spinosa’ and clayey substrate, high conductivity and/or alkalinity, D. protaeiformis ‘multicornis’ and pH, water hardness and the amount of clastic material and Centropyxis constricta ‘aerophila’ and high metal and S concentrations. In each case, eutrophication appeared to be the most important environmental factor, masking the effects of other variables. Faunal responses to high metal inputs in sediments remained minor, but were nevertheless detectable. Besides the trophic state of the lake, numerical methods suggested overall geochemical conditions (pH, redox) to be the most important factor at Luikonlahti, whereas the Haveri results showed the clearest connection between metals and amoebae. At Pyhäsalmi, the strongest relationships were found between Ca- and S-rich present loading, redox conditions and substrate composition. Sediment geochemistry and testate amoeba analysis proved to be a suitable combination of methods to detect and describe the aquatic mine impacts in each specific case, to evaluate recovery and to differentiate between the effects of different anthropogenic and natural environmental factors. It was also suggested that aquatic mine impacts can be significantly mitigated by careful design and after-care of the waste facilities, especially by reducing and preventing AMD. The case-specific approach is nevertheless necessary because of the unique characteristics of each mine and variations in the environmental background conditions.
Resumo:
This study has a technical and applied character. A PVC structured wall pipe can be produced by spirally winding a ribbed sheet having a male-female lock, chemically welded by an adhesive. These pipes are "flexible" and are used mainly in underground installations, to convey fluids in free duct regime. Initial studies have indicated that the buckling resistance of the ribs from the sheet coiling to the tube manufacturing is the critical design parameter. This study presents the theoretical analytical development in order to obtain the critical buckling moment of these sheets. This analysis uses concepts initially developed to calculate buckling resistance in monosymmetrical profiles that are very used in the metallic structure industry. Since the material used was PVC, that has different mechanical properties than steel and aluminum, it was necessary to consider the differences in the analytical treatment. It is important to emphasize that the results obtained are product of the co-operative work of engineers from industry and university.
Resumo:
In many engineering applications, compliant piping systems conveying liquids are subjected to inelastic deformations due to severe pressure surges such as plastic tubes in modern water supply transmission lines and metallic pipings in nuclear power plants. In these cases the design of such systems may require an adequate modeling of the interactions between the fluid dynamics and the inelastic structural pipe motions. The reliability of the prediction of fluid-pipe behavior depends mainly on the adequacy of the constitutive equations employed in the analysis. In this paper it is proposed a systematic and general approach to consistently incorporate different kinds of inelastic behaviors of the pipe material in a fluid-structure interaction analysis. The main feature of the constitutive equations considered in this work is that a very simple numerical technique can be used for solving the coupled equations describing the dynamics of the fluid and pipe wall. Numerical examples concerning the analysis of polyethylene and stainless steel pipe networks are presented to illustrate the versatility of the proposed approach.
Resumo:
Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.
Resumo:
Fiber-reinforced composites (FRCs) are a new group of non-metallic biomaterials showing a growing popularity in many dental and medical applications. As an oral implant material, FRC is biocompatible in bone tissue environment. Soft tissue integration to FRC polymer material is unclear. This series of in vitro studies aimed at evaluating unidirectional E-glass FRC polymer in terms of mechanical, chemical, and biological properties in an attempt to develop a new non-metallic oral implant abutment alternative. Two different types of substrates were investigated: (a) Plain polymer (BisGMA 50%–TEGDMA 50%) and (b) Unidirectional FRC. The mechanical behavior of high fiber-density FRCs was assessed using a three-point bending test. Surface characterization was performed using scanning electron and spinning disk confocal microscopes. The surface wettability/energy was determined using sessile drop method. The blood response, including blood-clotting ability and platelet morphology was evaluated. Human gingival fibroblast cell responses - adhesion kinetics, adhesion strength, and proliferation activity - were studied in cell culture environment using routine test conditions. A novel tissue culture method was developed and used to evaluate porcine gingival tissue graft attachment and growth on the experimental composite implants. The analysis of the mechanical properties showed that there is a direct proportionality in the relationship between E-glass fiber volume fraction and toughness, modulus of elasticity, and load bearing capacity; however, flexural strength did not show significant improvement when high fiber-density FRC is used. FRCs showed moderate hydrophilic properties owing to the presence of exposed glass fibers on the polymer surface. Blood-clotting time was shorter on FRC substrates than on plain polymer. The FRC substrates also showed higher platelet activation state than plain polymer substrates. Fibroblast cell adhesion strength and proliferation rate were highly pronounced on FRCs. A tissue culture study revealed that gingival epithelium and connective tissue established an immediate close contact with both plain polymer and FRC implants. However, FRC seemed to guide epithelial migration outwards from the tissue/implant interface. Due to the anisotropic and hydrophilic nature of FRC, it can be concluded that this material enhances biological events related with soft tissue integration on oral implant surface.
Improving the competitiveness of electrolytic Zinc process by chemical reaction engineering approach
Resumo:
This doctoral thesis describes the development work performed on the leachand purification sections in the electrolytic zinc plant in Kokkola to increase the efficiency in these two stages, and thus the competitiveness of the plant. Since metallic zinc is a typical bulk product, the improvement of the competitiveness of a plant was mostly an issue of decreasing unit costs. The problems in the leaching were low recovery of valuable metals from raw materials, and that the available technology offered complicated and expensive processes to overcome this problem. In the purification, the main problem was consumption of zinc powder - up to four to six times the stoichiometric demand. This reduced the capacity of the plant as this zinc is re-circulated through the electrolysis, which is the absolute bottleneck in a zinc plant. Low selectivity gave low-grade and low-value precipitates for further processing to metallic copper, cadmium, cobalt and nickel. Knowledge of the underlying chemistry was poor and process interruptions causing losses of zinc production were frequent. Studies on leaching comprised the kinetics of ferrite leaching and jarosite precipitation, as well as the stability of jarosite in acidic plant solutions. A breakthrough came with the finding that jarosite could precipitate under conditions where ferrite would leach satisfactorily. Based on this discovery, a one-step process for the treatment of ferrite was developed. In the plant, the new process almost doubled the recovery of zinc from ferrite in the same equipment as the two-step jarosite process was operated in at that time. In a later expansion of the plant, investment savings were substantial compared to other technologies available. In the solution purification, the key finding was that Co, Ni, and Cu formed specific arsenides in the “hot arsenic zinc dust” step. This was utilized for the development of a three-step purification stage based on fluidized bed technology in all three steps, i.e. removal of Cu, Co and Cd. Both precipitation rates and selectivity increased, which strongly decreased the zinc powder consumption through a substantially suppressed hydrogen gas evolution. Better selectivity improved the value of the precipitates: cadmium, which caused environmental problems in the copper smelter, was reduced from 1-3% reported normally down to 0.05 %, and a cobalt cake with 15 % Co was easily produced in laboratory experiments in the cobalt removal. The zinc powder consumption in the plant for a solution containing Cu, Co, Ni and Cd (1000, 25, 30 and 350 mg/l, respectively), was around 1.8 g/l; i.e. only 1.4 times the stoichiometric demand – or, about 60% saving in powder consumption. Two processes for direct leaching of the concentrate under atmospheric conditions were developed, one of which was implemented in the Kokkola zinc plant. Compared to the existing pressure leach technology, savings were obtained mostly in investment. The scientific basis for the most important processes and process improvements is given in the doctoral thesis. This includes mathematical modeling and thermodynamic evaluation of experimental results and hypotheses developed. Five of the processes developed in this research and development program were implemented in the plant and are still operated. Even though these processes were developed with the focus on the plant in Kokkola, they can also be implemented at low cost in most of the zinc plants globally, and have thus a great significance in the development of the electrolytic zinc process in general.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Diplomityössä tarkastellaan standardin EN 1090 vaikutuksia Bilfinger Industrial Services Finland Oy:n toimintaympäristössä ja kuinka niitä voidaan hallita hitsauksen laatujärjestelmän avulla. Työssä on myös käsitelty yrityksen pääasiallisen tuotannon eli metallisten teollisuusputkistojen valmistusta sekä laadunhallintaa yleisellä tasolla ja erityisesti hitsauksessa. Rakennustuoteasetuksen mukaisen yhdenmukaistetun standardin EN 1090-1:n siirtymäaika päättyy 1.7.2014 ja se asettaa uudenlaisia vaatimuksia teräsrakentamiseen. Rakennustuotteiden CE-merkintä ja sertifioidun laadunhallinnan järjestäminen vaikuttaa hyvin laajasti suomalaiseen metalliteollisuuteen. Työssä selvitettiin yrityksen nykyiset menettelyt ja kuinka niitä tulisi kehittää uusien vaatimusten mukaiseksi. Tietoa hankittiin keskustelemalla yrityksen henkilöstön kanssa ja tutustumalla sen toimintaperiaatteisiin. Selvitystyötä helpotti jo valmiiksi suhteellisen korkea hitsaustoiminnan laatutaso, joka johtuu vaativien asiakkaiden velvoittamasta laatutyöstä. Työn tuloksena yrityksellä on selkeä kuva miten toimintaa tulee kehittää EN 1090 vaatimusten täyttämiseksi. ISO 3834-2:n soveltaminen paineenalaisten putkistojen valmistuksessa tulee ulottaa myös teräsrakenteiden valmistukseen. Myös vaatimusten mukaisen dokumentaation luomista ja hallintaa tulee kehittää, jotta siitä ei tule liian raskasta henkilöstölle.
Resumo:
Työssä kehitetään standardin EN 12952 mukaisille vesiputkikattiloiden paineenalaisille osille lujuuslaskentaohjelma. Lisäksi perehdytään putkisto-osien mitoituksen lujuusopilliseen pohjaan ja tarkastellaan vastaako standardin mitoitus sitä. Standardin EN 13480 mukaisille metallisille teollisuusputkistoille on kohdeyrityksellä käytössään mitoitusohjelma. Näin ollen työssä vertaillaan standardin EN 12952 ja EN 13480 mukaisia putkisto-osien mitoituksia. Vertailun perusteella selvitetään mitkä putkistokomponentit voidaan mitoittaa olemassa olevalla ohjelmalla. Joidenkin putkisto-osien mitoitus on standardeissa yhtenevä. Suunnittelujännitys määritetään kuitenkin eri tavalla kyseisissä standardeissa. Tämän takia kaikki yrityksen tarvitsemat putkistokomponentit ovat kirjattu kehitettyyn laskentaohjelmaan. Koska putkistokomponenttien mitoitus on yhtenevä monelta osin kyseisissä standardeissa, vertaillaan ohjelmien antamia tuloksia toisiinsa. Näin voidaan todeta kehitetty laskentaohjelma toimivaksi.
Resumo:
The thesis is devoted to a theoretical study of resonant tunneling phenomena in semiconductor heterostructures and nanostructures. It considers several problems relevant to modern solid state physics. Namely these are tunneling between 2D electron layers with spin-orbit interaction, tunnel injection into molecular solid material, resonant tunnel coupling of a bound state with continuum and resonant indirect exchange interaction mediated by a remote conducting channel. A manifestation of spin-orbit interaction in the tunneling between two 2D electron layers is considered. General expression is obtained for the tunneling current with account of Rashba and Dresselhaus types of spin-orbit interaction and elastic scattering. It is demonstrated that the tunneling conductance is very sensitive to relation between Rashba and Dresselhaus contributions and opens possibility to determine the spin-orbit interaction parameters and electron quantum lifetime in direct tunneling experiments with no external magnetic field applied. A microscopic mechanism of hole injection from metallic electrode into organic molecular solid (OMS) in high electric field is proposed for the case when the molecules ionization energy exceeds work function of the metal. It is shown that the main contribution to the injection current comes from direct isoenergetic transitions from localized states in OMS to empty states in the metal. Strong dependence of the injection current on applied voltage originates from variation of the number of empty states available in the metal rather than from distortion of the interface barrier. A theory of tunnel coupling between an impurity bound state and the 2D delocalized states in the quantum well (QW) is developed. The problem is formulated in terms of Anderson-Fano model as configuration interaction between the carrier bound state at the impurity and the continuum of delocalized states in the QW. An effect of this interaction on the interband optical transitions in the QW is analyzed. The results are discussed regarding the series of experiments on the GaAs structures with a -Mn layer. A new mechanism of ferromagnetism in diluted magnetic semiconductor heterosructures is considered, namely the resonant enhancement of indirect exchange interaction between paramagnetic centers via a spatially separated conducting channel. The underlying physical model is similar to the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction; however, an important difference relevant to the low-dimensional structures is a resonant hybridization of a bound state at the paramagnetic ion with the continuum of delocalized states in the conducting channel. An approach is developed, which unlike RKKY is not based on the perturbation theory and demonstrates that the resonant hybridization leads to a strong enhancement of the indirect exchange. This finding is discussed in the context of the known experimental data supporting the phenomenon.
Resumo:
Dehiscent fruits of Euphorbiaceae usually have two stages of seed dispersal, autochory followed by myrmecochory. Two stages of Margaritaria nobilis seed dispersal were described, the first stage autochoric followed by ornithocoric. Their dehiscent fruits are green and after they detached from the tree crown and fall on the ground, they open and expose blue metallic cocas. We studied the seed dispersal system of Margaritaria nobilis in a semi-deciduous forest in Brazil. In 80 h of focal observations, we recorded only 12 visits of frugivores, however the thrush Turdus leucomelas was the only frugivore that swallowed the fruits on the tree crown. Pitylus fuliginosus (Fringilidae) and Pionus maximiliani (Psittacidae) were mainly pulp eaters, dropping the seeds below the tree. On the forest floor, after fruits dehiscence, jays (Cyanocorax chrysops), guans (Penelope superciliaris), doves (Geotrygon montana) and collared-peccaries (Pecari tajacu) were observed eating the blue diaspores of M. nobilis. Experiments in captivity showed that scaly-headed parrots (Pionus maximiliani), toco toucans (Ramphastos toco), jays (Cyanochorax chrysops), and guans (Penelope superciliaris) consumed the fruits and did not prey on the seeds before consumption. The seeds collected from the feces did not germinate in spite of the high viability. The two stages of seed dispersal in M. nobilis resembles the dispersal strategies of some mimetic species. However M. nobilis seeds are associated with an endocarp, it showed low investment in nutrients, and consistent with this hypothesis, M. nobilis shared important characteristics with mimetic fruits, such as bright color display, long seed dormancy and protection by secondary compounds.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
A new concept termed "radioautographology" is advocated. This term was synthesized from "radioautography" and "ology", expressing a new science derived from radioautography. The concept of radioautographology (RAGology) is that of a science whose objective is to localize radioactive substances in the biological structure of objects and to analyze and study the significance of these substances in the biological structure. On the other hand, the old term radioautography (RAG) is the technique used to demonstrate the pattern of localization of various radiolabeled compounds in specimens. The specimens used in biology and medicine are cells and tissues. They are fixed, sectioned and placed in contact with the radioautographic emulsions, which are exposed and developed to produce metallic silver grains. Such specimens are designated as radioautographs and the patterns of pictures made of silver grains are named radioautograms. The technicians who produce radioautographs are named radioautographers, while those who study RAGology are scientists and should be called radioautographologists. The science of RAGology can be divided into two parts, general RAGology and special RAGology, as most natural sciences usually can. General RAGology is the technology of RAG which consists of three fields of science, i.e., physics concerning radioactivity, histochemistry for the treatment of cells and tissues, and photochemistry dealing with the photographic emulsions. Special RAGology, on the other hand, consists of applications of general RAGology. The applications can be classified into several scientific fields, i.e., cellular and molecular biology, anatomy, histology, embryology, pathology and pharmacology. Studies carried out in our laboratory are summarized and reviewed. All the results obtained from such applications should be systematized as a new field of science in the future.
Resumo:
The effects of methylmercury (MeHg) on histochemical demonstration of the NADPH-diaphorase (NADPH-d) activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1) and the other animals were perfused 6 months later (group 2). After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80). Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg) in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05). These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.
Resumo:
Additive manufacturing is a fast growing manufacturing technology capable of producing complex objects without the need for conventional manufacturing process planning. During the process the work piece is built by adding material one layer at a time according to a digital 3D CAD model. At first additive manufacturing was mainly used to make prototypes but the development of the technology has made it possible to also make final products. Welding is the most common joining method for metallic materials. As the maximum part size of additive manufacturing is often limited, it may sometimes be required to join two or more additively manufactured parts together. However there has been almost no research on the welding of additively manufactured parts so far, which means that there has been very little information available on the possible differences compared to the welding of sheet metal parts. The aim of this study was to compare the weld joint properties of additively manufactured parts to those of sheet metal parts. The welding process that was used was TIG welding and the test material was 316L austenitic stainless steel. Weld joint properties were studied by making tensile, bend and hardness tests and by studying the weld microstructures with a microscope. Results show that there are certain characteristics in the welds of additively manufactured parts. The building direction of the test pieces has some impact on the mechanical properties of the weld. Nevertheless all the welds exhibited higher yield strength than the sheet metal welds but at the same time elongation at break was lower. It was concluded that TIG welding is a feasible process for welding additively manufactured parts.