808 resultados para maternal mind-mindedness
Resumo:
Recent studies have indicated that parathyroid hormone-related protein (PTHrP) may have important actions in lactation, affecting the mammary gland, and also calcium metabolism in the newborn and the mother. However, there are as yet no longitudinal studies to support the notion of an endocrine role of this peptide during nursing. We studied a group of 12 nursing mothers, mean age 32 years, after they had been nursing for an average of 7 weeks (B) and also 4 months after stopping nursing (A). It was assumed that changes occurring between A and B correspond to the effect of lactation. Blood was assayed for prolactin (PRL), PTHrP (two-site immunoradiometric assay with sheep antibody against PTHrP(1-40), and goat antibody against PTHrP(60-72), detection limit 0.3 pmol/l), intact PTH (iPTH), ionized calcium (Ca2+), 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), alkaline phosphatase (alkP), as well as for creatinine (Cr), protein, phosphorus (P), and total calcium (Ca). Fasting 2-h urine samples were analyzed for Ca excretion (CaE) and renal phosphate threshold (TmP/GFR). PRL was significantly higher during lactation than after weaning (39 +/- 10 vs. 13 +/- 9 micrograms/l; p = 0.018) and so was PTHrP (2.8 +/- 0.35 vs. 0.52 +/- 0.04 pmol/l; p = 0.002), values during lactation being above the normal limit (1.3 pmol/l) in all 12 mothers. There was a significant correlation between PRL and PTHrP during lactation (r = 0.8, p = 0.002). Whole blood Ca2+ did not significantly change from A (1.20 +/- 0.02 mmol/l) to B (1.22 +/- 0.02, mmol/l), whereas total Ca corrected for protein (2.18 +/- 0.02 mmol/l) or uncorrected (2.18 +/- 0.02 mmol/l) significantly rose during lactation (2.31 +/- 0.02 mmol/l, p = 0.003 and 2.37 +/- 0.03 mmol/l, p = 0.002, respectively). Conversely, iPTH decreased during lactation (3.47 +/- 0.38 vs. 2.11 +/- 0.35 pmol/l, A vs. B, p = 0.02). Serum-levels of 25(OH)D3 and 1,25(OH)2D3 did not significantly change from A to B (23 +/- 2.3 vs. 24 +/- 1.9 ng/ml and 29.5 +/- 6.0 vs. 21.9 +/- 1.8 pg/ml, respectively). Both TmP/GFR and P were higher during lactation than after weaning (1.15 +/- 0.03 vs. 0.86 +/- 0.05 mmol/l GF, p = 0.003 and 1.25 +/- 0.03 vs. 0.96 +/- 0.05 mmol/l, p = 0.002, respectively) as was alkP (74.0 +/- 7.1 vs. 52.6 +/- 6.9 U/l, p = 0.003). CaE did not differ between A and B (0.015 +/- 0.003 vs. 0.017 +/- 0.003 mmol/l GF, A vs. B, NS). We conclude that lactation is accompanied by an increase in serum PRL. This is associated with a release of PTHrP into the maternal blood circulation. A rise in total plasma Ca ensues, probably in part by increased bone turnover as suggested by the elevation of alkP. PTH secretion falls, with a subsequent rise of TmP/GFR and plasma P despite high plasma levels of PTHrP.
Resumo:
What does it mean for curriculum to be interactive? It encourages student engagement and active participation in both individual and group work. It offers teachers a coherent set of materials to choose from that can enhance their classes. It is the product of on-going development and continuous improvement based on research and feedback from the field. This paper will introduce work in progress from the Center for Excellence in Education, Science, and Technology (CELEST), an NSF Science of Learning Center. Among its many goals, CELEST is developing a unique educational curriculum, an interactive curriculum based upon models of mind and brain. Teachers, administrators, and governments are naturally concerned with how students learn. Students are greatly concerned about how minds work, including how to learn. CELEST aims to introduce curricula that not only meet current U.S. standards in mathematics, science, and psychology but also influence plans to improve those standards. Software and support materials are in development and available at http://cns.bu.edu/celest/private/. Interested parties are invited to contact the author for access.
Resumo:
Immunoglobulin E (IgE) mediates the immune response to parasites, but can also cause allergies. In humans maternal IgE is not transferred to cord blood and high levels of cord blood IgE are associated with subsequent allergy. In horses, both maternal IgG and IgE are transferred via colostrum; the IgE levels in the mare's serum, the colostrum and the foal's serum are correlated but the consequences of IgE transfer to foals are not known. By about 6 weeks of age the levels of IgE in foal serum have dropped to a nadir, at 6 months of age the level of IgE has risen only very slightly and is no longer correlated with the levels seen at birth, IgE(+) B-cells could be detected in lymphoid follicles of some foals at this age. Surprisingly, the levels of total IgE detected in a foals serum at 6 months of age are significantly correlated with the level in its serum at 1, 2 and even 3 years of age suggesting that by 6 months of age the foals are synthesizing IgE and that a pattern of relatively higher or lower total serum IgE has been established. The neonatal intestinal mucosa contained connective tissue mast cells which stained for bound IgE in foals up to 9 weeks of age but not mucosal mast cells, thereafter, the intestinal mast cells were IgE negative until 6 months of age. IgE antibodies to Culicoides nubeculosus salivary antigens were detected in Swiss born foals from imported Icelandic mares allergic to Culicoides spp. yet the foals showed no signs of skin sensitization and such second generation foals are known not to have an increased risk of developing allergy to Culicoides. Overall this evidence suggests there is a minimal effector role of maternal IgE also that maternal IgE has waned prior to the onset of IgE synthesis in foals and does not support maternal priming of IgE responses in foals. Furthermore the total levels of IgE in any given foal are seen to be relatively high or low from soon after the onset of IgE synthesis, and most likely they are determined by genetic factors.
Resumo:
Prompted reports of recall of spontaneous, conscious experiences were collected in a no-input, no-task, no-response paradigm (30 random prompts to each of 13 healthy volunteers). The mentation reports were classified into visual imagery and abstract thought. Spontaneous 19-channel brain electric activity (EEG) was continuously recorded, viewed as series of momentary spatial distributions (maps) of the brain electric field and segmented into microstates, i.e. into time segments characterized by quasi-stable landscapes of potential distribution maps which showed varying durations in the sub-second range. Microstate segmentation used a data-driven strategy. Different microstates, i.e. different brain electric landscapes must have been generated by activity of different neural assemblies and therefore are hypothesized to constitute different functions. The two types of reported experiences were associated with significantly different microstates (mean duration 121 ms) immediately preceding the prompts; these microstates showed, across subjects, for abstract thought (compared to visual imagery) a shift of the electric gravity center to the left and a clockwise rotation of the field axis. Contrariwise, the microstates 2 s before the prompt did not differ between the two types of experiences. The results support the hypothesis that different microstates of the brain as recognized in its electric field implement different conscious, reportable mind states, i.e. different classes (types) of thoughts (mentations); thus, the microstates might be candidates for the `atoms of thought'.
Resumo:
BACKGROUND Timing is critical for efficient hepatitis A vaccination in high endemic areas as high levels of maternal IgG antibodies against the hepatitis A virus (HAV) present in the first year of life may impede the vaccine response. OBJECTIVES To describe the kinetics of the decline of anti-HAV maternal antibodies, and to estimate the time of complete loss of maternal antibodies in infants in León, Nicaragua, a region in which almost all mothers are anti-HAV seropositive. METHODS We collected cord blood samples from 99 healthy newborns together with 49 corresponding maternal blood samples, as well as further blood samples at 2 and 7 months of age. Anti-HAV IgG antibody levels were measured by enzyme immunoassay (EIA). We predicted the time when antibodies would fall below 10 mIU/ml, the presumed lowest level of seroprotection. RESULTS Seroprevalence was 100% at birth (GMC 8392 mIU/ml); maternal and cord blood antibody concentrations were similar. The maternal antibody levels of the infants decreased exponentially with age and the half-life of the maternal antibody was estimated to be 40 days. The relationship between the antibody concentration at birth and time until full waning was described as: critical age (months)=3.355+1.969 × log(10)(Ab-level at birth). The survival model estimated that loss of passive immunity will have occurred in 95% of infants by the age of 13.2 months. CONCLUSIONS Complete waning of maternal anti-HAV antibodies may take until early in the second year of life. The here-derived formula relating maternal or cord blood antibody concentrations to the age at which passive immunity is lost may be used to determine the optimal age of childhood HAV vaccination.
Resumo:
The intrauterine environment is a major contributor to increased rates of metabolic disease in adults. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy that affects 0.5%-2% of pregnant women and is characterized by increased bile acid levels in the maternal serum. The influence of ICP on the metabolic health of offspring is unknown. We analyzed the Northern Finland birth cohort 1985-1986 database and found that 16-year-old children of mothers with ICP had altered lipid profiles. Males had increased BMI, and females exhibited increased waist and hip girth compared with the offspring of uncomplicated pregnancies. We further investigated the effect of maternal cholestasis on the metabolism of adult offspring in the mouse. Females from cholestatic mothers developed a severe obese, diabetic phenotype with hepatosteatosis following a Western diet, whereas matched mice not exposed to cholestasis in utero did not. Female littermates were susceptible to metabolic disease before dietary challenge. Human and mouse studies showed an accumulation of lipids in the fetoplacental unit and increased transplacental cholesterol transport in cholestatic pregnancy. We believe this is the first report showing that cholestatic pregnancy in the absence of altered maternal BMI or diabetes can program metabolic disease in the offspring.
Resumo:
OBJECTIVE: (1) To compare maternal characteristics and psychological stress profile among African-American, Caucasian and Hispanic mothers who delivered very low birthweight infants. (2) To investigate associations between psychosocial factors, frequency of milk expression, skin-to-skin holding (STS), and lactation performance, defined as maternal drive to express milk and milk volume. STUDY DESIGN: Self-reported psychological questionnaires were given every 2 weeks after delivery over 10 weeks. Milk expression frequency, STS, and socioeconomic variables were collected. RESULT: Infant birthweight, education, and milk expression frequency differed between groups. Trait anxiety, depression and parental stress in a neonatal intensive care unit (PSS:NICU) were similar. African-American and Caucasian mothers reported the lowest scores in state anxiety and social desirability, respectively. Maternal drive to express milk, measured by maintenance of milk expression, correlated negatively with parental role alteration (subset of PSS:NICU) and positively with infant birthweight and STS. Milk volume correlated negatively with depression and positively with milk expression frequency and STS. CONCLUSION: Differences between groups were observed for certain psychosocial factors. The response bias to self-reported questionnaires between groups may not provide an accurate profile of maternal psychosocial profile. With different factors correlating with maintenance of milk expression and milk volume, lactation performance can be best enhanced with a multi-faceted intervention program, incorporating parental involvement in infant care, close awareness and management of maternal mental health, and encouragement for frequent milk expression and STS.