885 resultados para magnetic shape-memory effect
Resumo:
We have investigated the electronic structure of ordered and disordered Sr2FeMoO6 using ab initio bandstructure methods. The effect of disorder was simulated within supercell calculations to realize several configurations with mis-site disorders. It is found that such disorder effects destroy the half-metallic ferromagnetic state of the ordered compound. It also leads to a substantial reduction of the magnetic moments at the Fe sites in the disordered configurations. Most interestingly, it is found for the disordered configurations that the magnetic coupling within the Fe sublattice as well as that within the Mo sublattice always remain ferromagnetic, while the two sublattices couple antiferromagnetically, in close analogy to the magnetic structure of the ordered compound, but,in contrast to recent suggestions.
Resumo:
We examine the symmetry-breaking transitions in equilibrium shapes of coherent precipitates in two-dimensional (2-D) systems under a plane-strain condition with the principal misfit strain components epsilon(xx)*. and epsilon(yy)*. For systems with cubic elastic moduli, we first show all the shape transitions associated with different values of t = epsilon(yy)*/epsilon(xx)*. We also characterize each of these transitions, by studying its dependence on elastic anisotropy and inhomogeneity. For systems with dilatational misfit (t = 1) and those with pure shear misfit (t = -1), the transition is from an equiaxed shape to an elongated shape, resulting in a break in rotational symmetry. For systems with nondilatational misfit (-1 < t < 1; t not equal 0), the transition involves a break in mirror symmetries normal to the x- and y-axes. The transition is continuous in all cases, except when 0 < t < 1. For systems which allow an invariant line (-1 less than or equal to t < 0), the critical size increases with an increase in the particle stiffness. However, for systems which do not allow an invariant line (0 < t less than or equal to 1), the critical size first decreases, reaches a minimum, and then starts increasing with increasing particle stiffness; moreover, the transition is also forbidden when the particle stiffness is greater than a critical value.
Resumo:
Ordered double perovskite oxides of the general formula A2BB′O6 have been known for several decades to have interesting electronic and magnetic properties. However, a recent report of a spectacular negative magnetoresistance effect in a specific member of this family, namely Sr2FeMoO6, has brought this class of compounds under intense scrutiny. It is now believed that the origin of the magnetism in this class of compounds is based on a novel kinetically-driven mechanism. This new mechanism is also likely to be responsible for the unusually high temperature ferromagnetism in several other systems, such as dilute magnetic semiconductors, as well as in various half-metallic ferromagnetic systems, such as Heussler alloys.
Resumo:
In this work, the effect of lattice orientation on the fields prevailing near a notch tip is investigated pertaining to various constraint levels in FCC single crystals. A modified boundary layer formulation is employed and numerical solutions under mode I, plane strain conditions are generated by assuming an elastic-perfectly plastic FCC single crystal. The analysis is carried out corresponding to different lattice orientations with respect to the notch line. It is found that the near-tip deformation field, especially the development of kink or slip shear bands is sensitive to the constraint level. The stress distribution and the size and shape of the plastic zone near the notch tip are also strongly influenced by the level of T-stress. The present results clearly establish that ductile single crystal fracture geometries would progressively lose crack tip constraint as the T-stress becomes more negative irrespective of lattice orientation. Also, the near-tip field for a range of constraint levels can be characterized by two-parameters such as K-T or J-Q as in isotropic plastic solids.
Resumo:
Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.
Resumo:
The unsteady free convection flow over an infinite vertical porous plate, which moves with time-dependent velocity in an ambient fluid, has been studied. The effects of the magnetic field and Hall current are included in the analysis. The buoyancy forces arise due to both the thermal and mass diffusion. The partial differential equations governing the flow have been solved numerically using both the implicit finite difference scheme and the difference-differential method. For the steady case, analytical solutions have also been obtained. The effect of time variation on the skin friction, heat transfer and mass transfer is very significant. Suction increases the skin friction coefficient in the primary flow, and also the Nusselt and Sherwood numbers, but the skin friction coefficient in the secondary flow is reduced. The effect of injection is opposite to that of suction. The buoyancy force, injection and the Hall parameter induce an overshoot in the velocity profiles in the primary flow which changes the velocity gradient from a negative to a positive value, but the magnetic field and suction reduce this velocity overshoot.
Resumo:
The magnetic properties of iron-filled multi-walled carbon nanotubes dispersed in polystyrene (Fe-MWNT/PS) have been investigated as a function of Fe-MWNT concentration (0.1-15 wt%) from 300 to 10 K. Electron microscopy studies indicate that Fe nanorods (aspect ratio similar to 5) remain trapped at various lengths of MWNT and are thus, prevented from oxidation as well as aggregation. The magnetization versus applied field (M-H loop) data of 0.1 wt% of Fe-MWNTs in PS show an anomalous narrowing at low temperatures which is due to the significant contribution from shape anisotropy of Fe nanorods. The remanence shows a threshold feature at 1 wt%. The enhanced coercivity shows a maximum at 1 wt% due to the dominant dipolar interactions among Fe nanorods. Also the squareness ratio shows a maximum at 1 wt%.
Resumo:
The effect of an applied electric field on the magnetic properties of L1(0)-ordered CoPd thin films is investigated by first-principle calculations. Both the magnetic moment and the magnetocrystalline anisotropy of the surface atoms are changed by the electric field, but the net effect depends on the surface termination. The magnetocrystalline anisotropy switches from in-plane to perpendicular in the presence of external electric field. Typical magnetic-moment changes are 0.1 mu(B) per eV/angstrom The main mechanism is the shift of the Fermi level, but the anisotropy change also reflects a crystal-field change due to incomplete screening.
Resumo:
Effect of particle size on the electron transport and magnetic properties of La0.7Ca0.3MnO3 has been investigated. While the ferromagnetic Tc, low field magnetic susceptibility, and insulator‐metal transition are markedly affected by the particle size, the maximum magnetoresistance exhibited by the samples near Tc is not sensitive to the particle size. However, the magnetoresistance at 4.2 K increases with decrease in particle size, suggesting a substantial contribution by the grain boundaries. Preliminary measurements on La0.7Sr0.3MnO3 samples of different particle sizes also corroborate the above conclusions.
Resumo:
In1−xMnxSb crystals are grown with different Mn doping concentrations (x = 0.006, 0.01, 0.02, and 0.04) beyond the equilibrium solubility limit by the horizontal Bridgman technique. Structural, magnetic, and magnetotransport properties of the grown crystals are studied in the temperature range 1.4–300 K. Negative magnetoresistance and anomalous Hall effect are observed below 10 K. The anomalous Hall coefficient is found to be negative. The temperature dependence of the magnetization measurement shows a magnetic ordering below 10 K, which could arise from InMnSb alloy formation. Also, the saturation in magnetization observed even at room temperature suggests the existence of ferromagnetic MnSb clusters in the crystals, which has been verified by scanning electron microscopy studies. The carrier concentration increases with Mn doping, and this results in a decrease of resistivity. The carrier concentration and mobility at room temperature for the doped crystals are ∼ 2×1019 cm−3 and ∼ 200 cm2/V s, respectively. The observed anomalous Hall effect suggests the carrier mediated ferromagnetism below 10 K in In1−xMnxSb crystals.
Resumo:
High temperature bonded interface indentation experiments are carried out on a Zr based bulk metallic glass (BMG) to examine the plastic deformation characteristics in subsurface deformation zone under a Vickers indenter. The results show that the shear bands are semi-circular in shape and propagate in radial direction. At all temperatures the inter-band spacing along the indentation axis is found to increase with increasing distance from the indenter tip. The average shear band spacing monotonically increases with temperature whereas the shear band induced plastic deformation zone is invariant with temperature. These observations are able to explain the increase in pressure sensitive plastic flow of BMGs with temperature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Here we study thermodynamic properties of an important class of single-chain magnets (SCMs), where alternate units are isotropic and anisotropic with anisotropy axes being non-collinear. This class of SCMs shows slow relaxation at low temperatures which results from the interplay of two different relaxation mechanisms, namely dynamical and thermal. Here anisotropy is assumed to be large and negative, as a result, anisotropic units behave like canted spins at low temperatures; but even then simple Ising-type model does not capture the essential physics of the system due to quantum mechanical nature of the isotropic units. We here show how statistical behavior of this class of SCMs can be studied using a transfer matrix (TM) method. We also, for the first time, discuss in detail how weak inter-chain interactions can be treated by a TM method. The finite size effect is also discussed which becomes important for low temperature dynamics. At the end of this paper, we apply this technique to study a real helical chain magnet.
Resumo:
In the present work, the effect of longitudinal magnetic field on wave dispersion characteristics of equivalent continuum structure (ECS) of single-walled carbon nanotubes (SWCNT) embedded in elastic medium is studied. The ECS is modelled as an Euler-Bernoulli beam. The chemical bonds between a SWCNT and the elastic medium are assumed to be formed. The elastic matrix is described by Pasternak foundation model, which accounts for both normal pressure and the transverse shear deformation. The governing equations of motion for the ECS of SWCNT under a longitudinal magnetic field are derived by considering the Lorentz magnetic force obtained from Maxwell's relations within the frame work of nonlocal elasticity theory. The wave propagation analysis is performed using spectral analysis. The results obtained show that the velocity of flexural waves in SWCNTs increases with the increase of longitudinal magnetic field exerted on it in the frequency range: 0-20 THz. The present analysis also shows that the flexural wave dispersion in the ECS of SWCNT obtained by local and nonlocal elasticity theories differ. It is found that the nonlocality reduces the wave velocity irrespective of the presence of the magnetic field and does not influences it in the higher frequency region. Further it is found that the presence of elastic matrix introduces the frequency band gap in flexural wave mode. The band gap in the flexural wave is found to independent of strength of the longitudinal magnetic field. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We observe an unusual tunneling magnetoresistance (TMR) phenomenon in a composite of La2/3Sr1/3MnO3 with CoFe2O4 where the TMR versus applied magnetic field loop suggests a ``negative coercive field.'' Tracing its origin back to a ``dipolar-biasing'' of La2/3Sr1/3MnO3 by CoFe2O4, we show that the TMR of even a single composite can be tuned continuously so that the resistance peak or the highest sensitivity of the TMR can be positioned anywhere on the magnetic field axis with a suitable magnetic history of the sample. This phenomenon of an unprecedented tunability of the TMR should be present in general in all such composites. (C) 2012 American Institute of Physics.http://dx.doi.org/10.1063/1.4731206]
Resumo:
The paper reports the effect of the addition of small amount of Al on the microstructure and properties of HITPERM class rapidly solidified Fe44Co44Zr7B4Cu1 glassy alloy. Using three dimensional atom probe measurements we present evidence for the formation of Cu clusters on annealing in the metallic glass matrix of the Al containing alloy Fe43Co43Al2Zr7B4Cu1. Such clusters are otherwise absent in the parent alloy under similar conditions. The Cu clusters provides heterogeneous nucleation sites for the formation of bcc alpha'-FeCo phase leading to an increase in number density of this nanocrystalline phase and thereby enhancing the magnetic properties. (C) 2012 Elsevier B.V. All rights reserved.