953 resultados para low-density lipoprotein receptor-related protein
Resumo:
BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).
Resumo:
OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.
Resumo:
Background: There may be a considerable gap between LDL cholesterol (LDL-C) and blood pressure (BP) goal values recommended by the guidelines and results achieved in daily practice. Design Prospective cross-sectional survey of cardiovascular disease risk profiles and management with focus on lipid lowering and BP lowering in clinical practice. Methods: In phase 1, the cardiovascular risk of patients with known lipid profile visiting their general practitioner was anonymously assessed in accordance to the PROCAM-score. In phase 2, high-risk patients who did not achieve LDL-C goal less than 2.6 mmol/l in phase 1 could be further documented. Results: Six hundred thirty-five general practitioners collected the data of 23 892 patients with known lipid profile. Forty percent were high-risk patients (diabetes mellitus or coronary heart disease or PROCAM-score >20%), compared with 27% estimated by the physicians. Goal attainment rate was almost double for BP than for LDL-C in high-risk patients (62 vs. 37%). Both goals were attained by 25%. LDL-C values in phase 1 and 2 were available for 3097 high-risk patients not at LDL-C goal in phase 1; 32% of patients achieved LDL-C goal of less than 2.6 mmol/l after a mean of 17 weeks. The most successful strategies for LDL-C reduction were implemented in only 22% of the high-risk patients. Conclusion: Although patients at high cardiovascular risk were treated more intensively than low or medium risk patients, the majority remained insufficiently controlled, which is an incentive for intensified medical education. Adequate implementation of Swiss and International guidelines would expectedly contribute to improved achievement of LDL-C and BP goal values in daily practice.
Resumo:
BACKGROUND AND AIMS: Data from prospective cohorts describing dyslipidaemia prevalence and treatment trends are lacking. Using data from the prospective CoLaus study, we aimed to examine changes in serum lipid levels, dyslipidaemia prevalence and management in a population-based sample of Swiss adults. METHODS AND RESULTS: Cardiovascular risk was assessed using PROCAM. Dyslipidaemia and low-density lipoprotein cholesterol (LDL-C) target levels were defined according to the Swiss Group for Lipids and Atherosclerosis. Complete baseline and follow up (FU) data were available for n = 4863 subjects during mean FU time of 5.6 years. Overall, 32.1% of participants were dyslipidaemic at baseline vs 46.3% at FU (p < 0.001). During this time, lipid lowering medication (LLM) rates among dyslipidaemic subjects increased from 34.0% to 39.2% (p < 0.001). In secondary prevention, LLM rates were 42.7% at baseline and 53.2% at FU (p = 0.004). In multivariate analysis, LLM use among dyslipidaemic subjects, between baseline and FU, was positively associated with personal history of CVD, older age, hypertension, higher BMI and diabetes, while negatively associated with higher educational level. Among treated subjects, LDL-C target achievement was positively associated with diabetes and negatively associated with personal history of CVD and higher BMI. Among subjects treated at baseline, LLM discontinuation was negatively associated with older age, male sex, smoking, hypertension and parental history of CVD. CONCLUSIONS: In Switzerland, the increase over time in dyslipidaemia prevalence was not paralleled by a similar increase in LLM. In a real-life setting, dyslipidaemia management remains far from optimal, both in primary and secondary prevention.
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
Background: Metabolic syndrome (MetS) is a combination of several cardio-metabolic risk factors including obesity, hyperglycemia, hypertension and dyslipidemia. MetS has been associated with increased levels of apolipoprotein B (apoB) and low-density lipoprotein oxidation (OxLDL) and with an increased risk of cardiovascular disease and non-alcoholic fatty liver disease. Aims: To establish the relation of apoB and OxLDL with the MetS development and to determine the status of MetS as a risk factor for adverse liver changes and for subclinical atherosclerosis. Subjects and Methods: The present thesis is part of the two large scale population-based, prospective, observational studies. Cardiovascular Risk in Young Finns study was launched in 1980 including 3,596 subjects aged 3-18 years. Thereafter follow-up studies have been conducted regularly. In the latest follow-ups that were performed in 2001 (N=2,283) and 2007 (N=2,204), non-invasive ultrasound studies were introduced to the study protocol to measure subclinical atherosclerosis i.e. carotid intima-media thickness (IMT), carotid artery distensibility (Cdist) and brachial flow-mediated dilatation (FMD). Alanine-aminotransferase (ALT) and gammaglutamyltransferase (GGT) were measured in 2007 to assess liver function. The Bogalusa Heart Study is a long-term epidemiologic study of cardiovascular risk factors launched in 1972 in a biracial community of Bogalusa, Louisiana, USA. Total of 374 youths (aged 9-18 years at baseline in 1984-88) who underwent non-invasive ultrasound studies of the carotid artery as adults, were included in the analyses of the present thesis. Results: The odds ratios (95% confidence intervals) for MetS incidence during a 6-year follow-up by quartiles of apoB were 2.0(1.0-3.8) for the second quartile, 3.1(1.7-5.7) for the third quartile and 4.2(2.3-7.6) for the fourth quartile. OxLDL was not independently associated with incident MetS. Youth (aged 9-18 years) with MetS or with high body mass index were at 2-3 times the risk of having MetS, high IMT, and type 2 diabetes 24-years later as adults. IMT increased 79±7μm (mean±SEM) in subjects with MetS and 42±2μm in subjects without the MetS (P<0.0001) during 6- years. Subjects who lost the MetS diagnosis during 6-year follow-up had reduced IMT progression compared to persistent MetS group (0.036±0.005vs.0.079±0.010 mm, P=0.001) and reduced Cdist change compared to incident MetS group (-0.12±0.05vs.-0.38±0.10 %/mmHg, P=0.03) over 6-year follow-up. MetS predicted elevated ALT (β±SEM=0.380±0.052, P<0.0001 in men and 0.160±0.052, P=0.002 in women) and GGT (β±SEM=0.240±0.058, P<0.0001 in men and 0.262±0.053, P<0.0001 in women) levels after 6-years. Conclusions: These findings suggest that apoB may give additional information on early metabolic disturbances predisposing MetS. MetS may be used to identify individuals at increased risk of developing atherosclerosis and non-alcoholic liver disease. However, recovery from the MetS may have positive effects on liver and vascular properties.
Resumo:
Background: In the past, oxidized low density lipoprotein (ox-LDL) has been associated with an unbeneficial lipid profile. This atherogenic lipid profile increases the risk of atherosclerotic cardiovascular diseases. Physical fitness has substantial effect on serum lipoprotein concentration as well as body composition and humoral responses, however interrelationships between ox-LDL and physical fitness have not been widely examined in a nationally representative sample. Aims: This thesis evaluates how cardiorespiratory and muscular fitness associate with ox-LDL lipids and how the other known risk factors of atherosclerosis might alter these associations. Subjects and Methods: The study cohort consisted of 846 healthy young males (mean age 25.1, SD 4.6) who were gathered by voluntary nationwide recruitment. Each participant conducted a series of physical fitness tests (cardiorespiratory and muscular fitness) and answered a detailed questionnaire that included lifestyle habits (i.e. smoking and leisuretime physical activity). Venous blood samples including ox-LDL and serum lipids were also collected. Results: Higher levels of ox-LDL were found in overweight and obese men, however, high cardiorespiratory fitness seemed to protect the overweight from high levels of ox-LDL. Young men who smoked and had poor cardiorespiratory or muscular fitness possessed a higher concentration of ox-LDL lipids when compared to comparable levels of cardiorespiratory or muscular fitness non-smoking young men. Metabolic syndrome was associated with increased levels of ox-LDL and high levels of ox-LDL combined with poor cardiorespiratory and abdominal muscle fitness seems to predict metabolic syndrome in young men. Also, participants with poor cardiorespiratory fitness and low levels of testosterone had higher levels of ox-LDL when compared to participants with high cardiorespiratory fitness / low testosterone as well as those with poor cardiorespiratory fitness / high testosterone. Conclusions: Good cardiorespiratory and muscular fitness protects young men from increased levels of ox-LDL lipids. This association was discovered in young men who were categorized as being overweight, smokers, metabolic syndrome or with low levels of testosterone. Being fit seems to prevent higher levels of ox-LDL, even in young healthy
Resumo:
The biodistribution and removal from plasma (measured as fractional clearance rate, FCR, per hour) of native and oxidatively modified 99mtechnetium-labeled ß-very low density lipoprotein (99mTc-ß-VLDL) were investigated in hypercholesterolemic (HC) and control (C) three-month old New Zealand rabbits. The intracellular accumulation of ß-VLDL labeled with 99mTc was studied in vitro in THP-1 cells and monocyte-derived macrophages isolated from rabbits. After intravenous injection into C rabbits, copper-oxidized ß-VLDL (99mTc-ox-ß-VLDL) was cleared from the circulation faster (0.362 ± 0.070/h) than native ß-VLDL (99mTc-nat-ß-VLDL, 0.241 ± 0.070/h). In contrast, the FCR of 99mTc-ox-ß-VLDL in HC rabbits was lower (0.100 ± 0.048/h) than that of 99mTc-nat-ß-VLDL (0.163 ± 0.043/h). The hepatic uptake of radiolabeled lipoproteins was lower in HC rabbits (0.114 ± 0.071% injected dose/g tissue for 99mTc-nat-ß-VLDL and 0.116 ± 0.057% injected dose/g tissue for 99mTc-ox-ß-VLDL) than in C rabbits (0.301 ± 0.113% injected dose/g tissue for 99mTc-nat-ß-VLDL and 0.305 ± 0.149% injected dose/g tissue for 99mTc-ox-ß-VLDL). The uptake of 99mTc-nat-ß-VLDL and 99mTc-ox-ß-VLDL by atherosclerotic aorta lesions isolated from HC rabbits (99mTc-nat-ß-VLDL: 0.033 ± 0.012% injected dose/g tissue and 99mTc-ox-ß-VLDL: 0.039 ± 0.017% injected dose/g tissue) was higher in comparison to that of non-atherosclerotic aortas from C rabbits (99mTc-nat-ß-VLDL: 0.023 ± 0.010% injected dose/g tissue and 99mTc-ox-ß-VLDL: 0.019 ± 0.010% injected dose/g tissue). However, 99mTc-nat-ß-VLDL and 99mTc-ox-ß-VLDL were taken up by atherosclerotic lesions at similar rates. In vitro studies showed that both monocyte-derived macrophages isolated from rabbits and THP-1 macrophages significantly internalized more 99mTc-ox-ß-VLDL than 99mTc-nat-ß-VLDL. These results indicate that in cholesterol-fed rabbits 99mTc-ox-ß-VLDL is slowly cleared from plasma and accumulates in atherosclerotic lesions. However, although the extent of in vitro uptake of 99mTc-ox-ß-VLDL by macrophages was high, the in vivo accumulation of this radiolabeled lipoprotein by atherosclerotic lesions did not differ from that of 99mTc-nat-ß-VLDL.
Resumo:
The relationship between lipid serum levels and coronary atherosclerotic plaque fat content was studied in 51 necropsy patients. Serum lipids were measured by standard techniques, during life, in the absence of lipid-lowering drugs. Intima, intimal fat and media areas were measured using a computerized system in cryosections of the odd segments of the right, anterior descending and circumflex coronary arteries stained with Sudan-IV. Mean intimal and lipid areas were 5.74 ± 1.98 and 1.22 ± 0.55 mm² (22.12 ± 8.48%) in 26 cases with high cholesterol (³200 mg/dL) and 4.98 ± 1.94 and 1.16 ± 0.66 mm² (22.75 ± 9.06%) in 25 cases with normal cholesterol (<200 mg/dL; P > 0.05). Patients with high levels of low-density lipoprotein (³130 mg/dL, N = 15) had a higher intima/media area ratio than those with normal levels of low-density lipoprotein (<130 mg/dL, N = 13, P < 0.01). No significant difference in the morphometrical variables was found in groups with high or low serum levels of triglycerides (³200 mg/dL, N = 13 vs <200 mg/dL, N = 36) or high-density lipoprotein (³35 mg/dL, N = 11 vs <35 mg/dL, N = 17). The association between the morphological measurements and serum levels of cholesterol, its fractions, and triglycerides was also tested and the correlation coefficients were low. Although high cholesterol is a risk factor, we show here that in patients with severe atherosclerosis blood cholesterol and triglyceride levels seem to have little influence on coronary lipid content, indicating that other factors may contribute to arterial lipid deposition and plaque formation.
Resumo:
Apolipoprotein E (ApoE) polymorphism influences lipid metabolism, but its association with arterial hypertension is controversial. The objective of this study was to examine the association between ApoE polymorphism and prevalent hypertension in a large unselected population of older adults. Participants from the baseline of the Bambuí Health Aging Study whose ApoE genes had been genotyped were selected for this study (N = 1406, aged 60-95 years). These subjects represented 80.7% of the total elderly residents in Bambuí city, MG, Brazil. Hypertension was defined as a systolic blood pressure ³140 mmHg and/or a diastolic blood pressure ³90 mmHg, or the use of anti-hypertensive medication. The exposure variable was the ApoE genotype as follows: e3 carriers, e3e3; e2 carriers, e2e2 or e2e3, and e4 carriers, e3e4 or e4e4. Potential confounding variables were age, gender, traditional cardiovascular risk factors, uric acid, and creatinine levels. The prevalence of hypertension was 61.3%. Compared with the e3 homozygotes, neither the e2 nor the e4 carrier status was associated with hypertension (adjusted prevalence ratios = 0.94, 95%CI = 0.83-1.07 and 0.98, 0.89-1.07, respectively). On the other hand, the e2 allele carriers had lower LDL cholesterol levels (P < 0.001) and the e4 carriers had higher LDL cholesterol levels (P = 0.036). This study provides epidemiologic evidence that the ApoE genotype is not associated with prevalent hypertension in old age.
Resumo:
We evaluated genetic variants of apolipoprotein E (APOE HhaI) and their association with serum lipids in colorectal cancer (CRC), together with eating habits and personal history. Eight-seven adults with CRC and 73 controls were studied. APOE*2 (rs7412) and APOE*4 (rs429358) were identified by polymerase chain reaction-restriction fragment length polymorphism. APOE gene polymorphisms were similar in both groups, but the ε4/ε4 genotype (6%) was present only in controls. The patients had reduced levels (mean ± SD) of total cholesterol and low-density lipoprotein cholesterol fraction (180.4 ± 49.5 and 116.1 ± 43.1 mg/dL, respectively) compared to controls (204.2 ± 55.6, P = 0.135 and 134.7 ± 50.8 mg/dL; P = 0.330, respectively) indicating that they were not statistically significant after the Bonferroni correction. The APOE*4 allele was associated with lower levels of total cholesterol, low- and high-density lipoprotein cholesterol fraction and increased levels of very low-density lipoprotein cholesterol fraction and triglycerides only among patients (P = 0.014). There was a positive correlation between the altered lipid profile and increased body mass indexes in both groups (P < 0.010). Moreover, a higher rate of hypertension and overweight was observed in controls (P < 0.002). In conclusion, the presence of the ε4/ε4 genotype only in controls may be due to a protective effect against CRC. Lower lipid profile values among patients, even those on lipid-rich diets associated with the APOE*4 allele, suggest alterations in the lipid synthesis and metabolism pathways in CRC.
Resumo:
We investigated the effect of the -278A>C polymorphism in the CYP7A1 gene on the response of plasma lipids to a reduced-fat diet for 6 to 8 weeks in a group of 82 dyslipidemic males with a mean age of 46.0 ± 11.7 years. Individuals who presented at least one high alteration in total cholesterol, low-density lipoprotein cholesterol or triglyceride values were considered to be dyslipidemic. Exclusion criteria were secondary dyslipidemia due to diabetes mellitus, renal, liver, or thyroid disease. None of the subjects were using lipid-lowering medication. Baseline and follow-up lipid concentrations were measured. The genotypes were determined by the digestion of PCR products with the BsaI restriction endonuclease. There were statistically significant reductions in plasma total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations after dietary intervention. The minor allele C has a frequency of 43%. Carriers of the C allele had significantly lower triglyceride concentrations (P = 0.02) than AA homozygotes. After adjustment of covariates, subjects with the AC and CC genotypes showed a greater reduction in triglyceride concentrations compared to subjects with the AA genotype. Multiple linear regression analyses showed that the AC and CC CYP7A1 genotypes accounted for 5.2 and 6.2% of triglyceride concentration during follow-up and adjusted percent of change of triglyceride concentration, respectively. The present study provides evidence that -278A>C polymorphism in the CYP7A1 gene can modify triglyceride concentrations in response to a reduced fat diet in a dyslipidemic male population. This gene represents a potential locus for a nutrigenetic directed approach.
Resumo:
Acne vulgaris is a multifactorial disease affecting a majority of the adolescent population. The objective of this study was to test for a correlation between fasting serum lipid profiles and levels of testosterone, insulin, leptin, and interleukin 1-β (IL-1β) and the incidence of severe acne vulgaris in obese adolescent females. Four groups of adolescent females were studied: obese with acne, obese without acne, non-obese with acne, and non-obese without acne. Obese females with acne, compared to obese females without acne and non-obese subjects, had significantly higher serum triglycerides, low-density lipoprotein cholesterol and apolipoprotein-B (apo-B) (mean ± SD: 197 ± 13.7 vs 171 ± 11.5, 128 ± 8.3 vs 116 ± 7.7, 96 ± 13.7 vs 85 ± 10.3 mg/dL, respectively) but significantly lower high-density lipoprotein cholesterol and apo-A1 levels (40 ± 3.3 vs 33 ± 3.5 and 126 ± 12 vs 147 ± 13 mg/dL). Serum testosterone, insulin and leptin levels were significantly higher in obese subjects with or without acne compared to non-obese females with or without acne (3 ± 0.5 vs 2.1 ± 0.47, 15.5 ± 3.3 vs 11.6 ± 3, 0.9 ± 0.2 vs 0.6 ± 0.15 nmol/mL, respectively). Serum IL-1b was significantly elevated in obese and non-obese subjects with acne compared to subjects without acne; in those without acne, these levels were higher in obese than non-obese subjects (2.4 ± 0.2, 1.4 ± 0.1 vs 1.8 ± 0.12 and 1.3 ± 0.11 pg/mL, respectively). Our results indicate that there is a relationship between obesity (BMI >27) and acne. By early recognition, the etiology and treatment protocol of acne may prevent unwanted conditions.
Resumo:
Both genetic background and diet have profound effects on plasma lipid profiles. We hypothesized that a high-carbohydrate (high-CHO) diet may affect the ratios of serum lipids and apolipoproteins (apo) differently in subjects with different genotypes of the SstI polymorphism in the apoCIII gene (APOC3). Fifty-six healthy university students (27 males and 29 females, 22.89 ± 1.80 years) were given a washout diet of 54% carbohydrate for 7 days, followed by a high-CHO diet of 70% carbohydrate for 6 days without total energy restriction. Serum triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apoB100, apoAI, and the APOC3 SstI polymorphism were analyzed. The ratios of serum lipids and apoB100/apoAI were calculated. At baseline, the TG/HDL-C ratio was significantly higher in females, but not in males, with the S2 allele. The differences in the TG/HDL-C ratio between genotypes remained the same after the washout and the high-CHO diet in females. When compared with those before the high-CHO diet, the TC/HDL-C (male S2 carriers: 3.13 ± 1.00 vs 2.36 ± 0.65, P = 0.000; male subjects with the S1S1 genotype: 2.97 ± 0.74 vs 2.09 ± 0.55, P = 0.000; female S2 carriers: 2.68 ± 0.36 vs 2.24 ± 0.37, P = 0.004; female subjects with the S1S1 genotype: 2.69 ± 0.41 vs 2.09 ± 0.31, P = 0.000) and LDL-C/HDL-C (male S2 carriers: 1.44 ± 0.71 vs 1.06 ± 0.26, P = 0.012; male subjects with the S1S1 genotype: 1.35 ± 0.61 vs 1.01 ± 0.29, P = 0.005; female S2 carriers: 1.18 ± 0.33 vs 1.00 ± 0.18, P = 0.049; female subjects with the S1S1 genotype: 1.18 ± 0.35 vs 1.04 ± 0.19, P = 0.026) ratios were significantly decreased after the high-CHO diet regardless of gender and of genotype of the APOC3 SstI polymorphism. However, in female S2 carriers, the TG/HDL-C (1.38 ± 0.46 vs 1.63 ± 0.70, P = 0.039) ratio was significantly increased after the high-CHO diet. In conclusion, the high-CHO diet has favorable effects on the TC/HDL-C and LDL-C/HDL-C ratios regardless of gender and of genotype of the APOC3 SstI polymorphism. Somehow, it enhanced the adverse effect of the S2 allele on the TG/HDL-C ratio only in females.