931 resultados para liquid flow monitoring


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental investigations and computer modelling studies have been made on the refrigerant-water counterflow condenser section of a small air to water heat pump. The main object of the investigation was a comparative study between the computer modelling predictions and the experimental observations for a range of operating conditions but other characteristics of a counterflow heat exchanger are also discussed. The counterflow condenser consisted of 15 metres of a thermally coupled pair of copper pipes, one containing the R12 working fluid and the other water flowing in the opposite direction. This condenser was mounted horizontally and folded into 0.5 metre straight sections. Thermocouples were inserted in both pipes at one metre intervals and transducers for pressure and flow measurement were also included. Data acquisition, storage and analysis was carried out by a micro-computer suitably interfaced with the transducers and thermocouples. Many sets of readings were taken under a variety of conditions, with air temperature ranging from 18 to 26 degrees Celsius, water inlet from 13.5 to 21.7 degrees, R12 inlet temperature from 61.2 to 81.7 degrees and water mass flow rate from 6.7 to 32.9 grammes per second. A Fortran computer model of the condenser (originally prepared by Carrington[1]) has been modified to match the information available from experimental work. This program uses iterative segmental integration over the desuperheating, mixed phase and subcooled regions for the R12 working fluid, the water always being in the liquid phase. Methods of estimating the inlet and exit fluid conditions from the available experimental data have been developed for application to the model. Temperature profiles and other parameters have been predicted and compared with experimental values for the condenser for a range of evaporator conditions and have shown that the model gives a satisfactory prediction of the physical behaviour of a simple counterflow heat exchanger in both single phase and two phase regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies into the two-phase flow patterns produced on a sieve tray were carried out using an air-water simulator of 2.44 m in diameter. The flow patterns were investigated by a number of methods, direct observation using directional flow pointers; by water-cooling to simulate mass transfer; and by measurement of the height of clear liquid across the tray with manometers. The flow rates used were designed to show how the flow pattern changed with the change in the gas and liquid rates. The results from water-only studies on an un-perforated tray were compared with those produced on a sieve tray with holes of 12.7 mm diameter. The presence of regions on the sides of the tray where the liquid was circulating was noted from the water-only experiments. The presence and magnitude of the circulations was reduced when the air was passed through the liquid. These were similar to the findings of Hine (1990) and Chambers (1993). When circulation occurred, the flow separated at the ends of the inlet downcomer and circulations of up to 30% of the tray area were observed. Water-cooling and the manometer measurements were used to show the effect of the flow pattern on the tray efficiency and the height of clear liquid respectively. The efficiency was severely reduced by the presence of circulations. The height of clear liquid tended to rise in these areas. A comparison of data collected on trays with different hole diameters showed that the larger hole diameter inhibited the on-set of separation to a greater extent than small hole diameters. The tray efficiency was affected by a combination of the better mixing on smaller hole trays and detrimental effect of greater circulation on these trays. Work on a rectangular tray geometry was carried out to assess the effect of hole size on the height of clear liquid. It was found that the gradient on the outlet half of the tray was very small and that the highest clear liquid height was given by the highest hole size. Overall, the experiments helped to clarify the effect that the flow pattern had on the operation of the tray. It is hoped that the work can be of use in the development of models to predict the flow pattern and hence the tray efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a basis for the commercial separation of normal paraffins a detailed study has been made of factors affecting the adsorption of binary liquid mixtures of high molecular weight normal paraffins (C12, C16, and C20) from isooctane on type 5A molecular sieves. The literature relating to molecular sieve properties and applications, and to liquid-phase adsorption of high molecular weight normal paraffin compounds by zeolites, was reviewed. Equilibrium isotherms were determined experimentally for the normal paraffins under investigation at temperatures of 303oK, 323oK and 343oK and showed a non-linear, favourable- type of isotherm. A higher equilibrium amount was adsorbed with lower molecular weight normal paraffins. An increase in adsorption temperature resulted in a decrease in the adsorption value. Kinetics of adsorption were investigated for the three normal paraffins at different temperatures. The effective diffusivity and the rate of adsorption of each normal paraffin increased with an increase in temperature in the range 303 to 343oK. The value of activation energy was between 2 and 4 kcal/mole. The dynamic properties of the three systems were investigated over a range of operating conditions (i.e. temperature, flow rate, feed concentration, and molecular sieve size in the range 0.032 x 10-3 to 2 x 10-3m) with a packed column. The heights of adsorption zones calculated by two independent equations (one based on a constant width, constant velocity and adsorption zone and the second on a solute material balance within the adsorption zone) agreed within 3% which confirmed the validity of using the mass transfer zone concept to provide a simple design procedure for the systems under study. The dynamic capacity of type 5A sieves for n-eicosane was lower than for n-hexadecane and n-dodecane corresponding to a lower equilibrium loading capacity and lower overall mass transfer coefficient. The values of individual external, internal, theoretical and experimental overall mass transfer coefficient were determined. The internal resistance was in all cases rate-controlling. A mathematical model for the prediction of dynamic breakthrough curves was developed analytically and solved from the equilibrium isotherm and the mass transfer rate equation. The experimental breakthrough curves were tested against both the proposed model and a graphical method developed by Treybal. The model produced the best fit with mean relative percent deviations of 26, 22, and 13% for the n-dodecane, n-hexadecane, and n-eicosane systems respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid-solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with `true' three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was mainly experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties. Evidence of strong `trade-off' of properties is shown; the overall solid holdup is believed to be a major parameter influencing the gas holdup structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An intelligent agent, operating in an external world which cannot be fully described in its internal world model, must be able to monitor the success of a previously generated plan and to respond to any errors which may have occurred. The process of error analysis requires the ability to reason in an expert fashion about time and about processes occurring in the world. Reasoning about time is needed to deal with causality. Reasoning about processes is needed since the direct effects of a plan action can be completely specified when the plan is generated, but the indirect effects cannot. For example, the action `open tap' leads with certainty to `tap open', whereas whether there will be a fluid flow and how long it might last is more difficult to predict. The majority of existing planning systems cannot handle these kinds of reasoning, thus limiting their usefulness. This thesis argues that both kinds of reasoning require a complex internal representation of the world. The use of Qualitative Process Theory and an interval-based representation of time are proposed as a representation scheme for such a world model. The planning system which was constructed has been tested on a set of realistic planning scenarios. It is shown that even simple planning problems, such as making a cup of coffee, require extensive reasoning if they are to be carried out successfully. The final Chapter concludes that the planning system described does allow the correct solution of planning problems involving complex side effects, which planners up to now have been unable to solve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The available literature has been surveyed to determine the parameters affecting fuelling requirements of spark ignition engines and their relation to engine performance and emissions. Theories and experiment relating to two phase and multi-component flows have also been examined and the techniques employed in the measurement of droplet sizes and liquid wall films have been reviewed. Following preliminary steady flow visualisation experiments to examine the trajectories of droplets discharging from the valve port an extensive practical investigation of the spectrum of droplet sizes formed by the break up of the wall film has produced results which have been correlated in terms of the important fuel and airflow parameters. It is concluded that the Sauter mean diameter of droplets formed by the break up of the wall film will vary between 70 and 150 m, depending on the operating conditions of the engine. The spectra of droplet sizes measured show that a significant proportion of the total mass of the wall film breaks into drops which will be too large to burn completely and, by comparison with measurements of unburned hydrocarbon emissions from engines supplied with a homogeneous mixture of air and gaseous hydrocarbons, it is concluded that the droplets from the wall film are likely to increase emissions by 50%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A combined flow loop - jet impingement pilot plant has been used to determine mass loss rates in a mixed gas - saltwater - sand multiphase flow at impact velocities up to 70 m/s. Artificial brine with a salt content of 27 g/1 was used as liquid phase. Sand content, with grain size below 150 µ, was 2.7 g/l brine. CO at a pressure of 15 bar was used as gas phase. The impact angle between jet stream (nozzle) and sample surface was varied between 30 and 90°. Rectangular stainless steel disc samples with a size of 20 × 15 × 5 mm were used. They were mechanically ground and polished prior to testing. Damaged surfaces of specimens exposed to the high velocity multiphase flow were investigated by stereo microscopy, scanning electron microscopy (SEM) and an optical device for 3D surface measurements. Furthermore, samples were investigated by applying atomic force microscopy (AFM), magnetic force microscopy (MFM) and nanoindentation. Influence of impact velocity and impact angle on penetration rates (mass loss rates) of two CRAs (UNS S30400 and N08028) are presented. Moreover effects of chemical composition and mechanical properties are critically discussed. © 2008 by NACE International.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liquid desiccant systems are of potential interest as a means of cooling greenhouses to temperatures below those achieved by conventional means. However, only very little work has been done on this technology with previous workers focussing on the cooling of human dwellings using expensive desiccants such as lithium salts. In this study we are designing a system for greenhouse cooling based on magnesium chloride desiccant which is an abundant and non-toxic substance. Magnesium chloride is found in seawater, for example, and is a by-product from solar salt works. We have carried out a detailed experimental study of the relevant properties of magnesium rich solutions. In addition we have constructed a test rig that includes the main components of the cooling system, namely a dehumidifier and solar regenerator. The dehumidifier is a cross-flow device that consists of a structured packing made of corrugated cellulose paper sheets with different flute angles and embedded cooling tubes. The regenerator is of the open type with insulated backing and fabric covering to spread the flow of desiccant solution. Alongside these experiments we are developing a mathematical model in gPROMS® that combines and simulates the heat and mass transfer processes in these components. The model can be applied to various geographical locations. Here we report predictions for Havana (Cuba) and Manila (Philippines), where we find that average wet-bulb temperatures can be lowered by 2.2 and 3°C, respectively, during the month of May.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose and demonstrate a novel scheme for simultaneous measurement of liquid level and temperature based on a simple uniform fiber Bragg grating (FBG) by monitoring both the short-wavelength-loss peaks and its Bragg resonance. The liquid level can be measured from the amplitude changes of the short-wavelength-loss peaks, while temperature can be measured from the wavelength shift of the Bragg resonance. Both theoretical simulation results and experimental results are presented. Such a scheme has some advantages including robustness, simplicity, flexibility in choosing sensitivity and simultaneous temperature measurement capability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simulation of two-phase flow for an experimental airlift reactor (32-l volume) using commercially available software from Fluent Incorporated is presented here (http://www.fluent.co.uk). Data from the simulation is compared with the experimental data obtained by the tracking of a magnetic particle and analysis of the pressure drop to determine the gas hold-up. Comparisons between vertical velocity and gas hold-up were made for a series of experiments where the superficial gas velocity in the riser was adjusted between 0.01 and 0.075 m s-1. © 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In non-invasive ventilation, continuous monitoring of respiratory volumes is essential. Here, we present a method for the measurement of respiratory volumes by a single fiber-grating sensor of bending and provide the proof-of-principle by applying a calibration-test measurement procedure on a set of 18 healthy volunteers. Results establish a linear correlation between a change in lung volume and the corresponding change in a local thorax curvature. They also show good sensor accuracy in measurements of tidal and minute respiratory volumes for different types of breathing. The proposed technique does not rely on the air flow through an oronasal mask or the observation of chest movement by a clinician, which distinguishes it from the current clinical practice. © 2014 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiratory-volume monitoring is an indispensable part of mechanical ventilation. Here we present a new method of the respiratory-volume measurement based on a single fibre-optical long-period sensor of bending and the correlation between torso curvature and lung volume. Unlike the commonly used air-flow based measurement methods the proposed sensor is drift-free and immune to air-leaks. In the paper, we explain the working principle of sensors, a two-step calibration-test measurement procedure and present results that establish a linear correlation between the change in the local thorax curvature and the change of the lung volume. We also discuss the advantages and limitations of these sensors with respect to the current standards. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first demonstration of heterogeneous catalysis within an oscillatory baffled flow reactor (OBR) is reported, exemplified by the solid acid catalysed esterification of organic acids, an important prototypical reaction for fine chemicals and biofuel synthesis. Suspension of a PrSOH-SBA-15 catalyst powder is readily achieved within the OBR under an oscillatory flow, facilitating the continuous esterification of hexanoic acid. Excellent semi-quantitative agreement is obtained between OBR and conventional stirred batch reaction kinetics, demonstrating efficient mixing, and highlighting the potential of OBRs for continuous, heterogeneously catalysed liquid phase transformations. Kinetic analysis highlights acid chain length (i.e. steric factors) as a key predictor of activity. Continuous esterification offers improved ester yields compared with batch operation, due to the removal of water by-product from the catalyst, evidencing the versatility of the OBR for heterogeneous flow chemistry and potential role as a new clean catalytic technology. © The Royal Society of Chemistry 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reactive, but not a reactant. Heterogeneous catalysts play an unseen role in many of today's processes and products. With the increasing emphasis on sustainability in both products and processes, this handbook is the first to combine the hot topics of heterogeneous catalysis and clean technology. It focuses on the development of heterogeneous catalysts for use in clean chemical synthesis, dealing with how modern spectroscopic techniques can aid the design of catalysts for use in liquid phase reactions, their application in industrially important chemistries - including selective oxidation, hydrogenation, solid acid- and base-catalyzed processes - as well as the role of process intensification and use of renewable resources in improving the sustainability of chemical processes. With its emphasis on applications, this book is of high interest to those working in the industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-fiber microchannels were fabricated directly in standard single mode fiber using the femtosecond laser inscribe and etch technique. This method of creating in-fiber microchannels offers great versatility since it allows complex three dimensional structures to be inscribed and then etched with hydrofluoric acid. Four in-fiber microchannel designs were experimentally investigated using this technique. Device characteristics were evaluated through monitoring the spectral change while inserting index matching oils into each microchannel - a R.I. sensitivity up to 1.55 dB/RIU was achieved. Furthermore, a simple Fabry-Pérot based refractometer with a R.I. sensitivity of 2.75 nm/RIU was also demonstrated. © 2014 SPIE.