867 resultados para least square-support vector machine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support vector machines (SVMs) have recently emerged as a powerful technique for solving problems in pattern classification and regression. Best performance is obtained from the SVM its parameters have their values optimally set. In practice, good parameter settings are usually obtained by a lengthy process of trial and error. This paper describes the use of genetic algorithm to evolve these parameter settings for an application in mobile robotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A aceitação e o uso de Tecnologia da Informação (TI) pelo indivíduo têm sido estudadas por diferentes modelos conceituais que, em geral, derivaram de teorias da Psicologia como a TRA Theory of Reasoned Action e a TPB Theory of Planned Behavior, derivada da primeira. Um importante modelo de análise dai derivado, resultado da minuciosa análise de outros 8 modelos anteriores, o UTAUT - Unified Theory of Acceptance and Use of Technology de VENKATESH et. al. (2003) tem sido largamente analisado e validado em vários cenários de tecnologia e ambientes. Este trabalho visa compreender de uma maneira mais ampla dos fatores antecedentes da intenção de uso e comportamento de uso a partir do modelo UTAUT, bem como os fatores que melhores explicam a intenção e o comportamento de uso, assim como a análise de seus moderadores. Em seu desenvolvimento, Venkatesh et al. empreenderam comparações em três etapas de implantação e em dois cenários: na adoção mandatória, aquela em que se deu em ambiente empresarial onde o sistema é requerido para execução de processos e tomada de decisões, e na adoção voluntária, cenário em que a adoção se dá pelo indivíduo. No segundo caso, os autores concluíram que o fator influência social tem baixa magnitude e significância, não se revelando um fator importante na adoção da tecnologia. Este trabalho visa analisar também se o mesmo fenômeno ocorre para adoção que se dá de forma voluntária, mas passível de ser altamente influenciada pelos laços sociais, como o que ocorre entre usuários das redes sociais como Orkut, Facebook, Twitter e Linkedin, especialmente em tecnologias que habilitam ganhos associados ao exercício desses laços, como no caso do uso de sites de compras coletivas tais como Peixe Urbano, Groupon e Clickon. Com base no modelo UTAUT, foi aplicada uma pesquisa e posteriormente foram analisados os resultados de 292 respondentes validados que foram acessados por e-mails e redes sociais. A técnica de análise empregada consistiu do uso de modelagem por equações estruturais, com base no algoritmo PLS Partial Least Square, com bootstrap de 1000 reamostragens. Os resultados demonstraram alta magnitude e significância preditiva sobre a Intenção de uso da tecnologia pelos fatores de Expectativa de Desempenho (0,288@0,1%), Influência Social (0,176@0,1%). Os primeiro, compatível com estudos anteriores. Já a magnitude e significância do último fator resultou amplamente superior ao estudo original de Venkatesh et al. (2003) variando entre 0,02 a 0,04, não significante, dependendo dos dados estarem agrupados ou não (p.465). A principal conclusão deste estudo é que, ao considerarmos o fenômeno das compras coletivas, em um ambiente de adoção voluntária, portanto, o fator social é altamente influente na intenção de uso da tecnologia, o que contrasta fortemente com o estudo original do UTAUT (já que no estudo de Venkatesh et al. (2003) este fator não foi significante) e apresenta várias possibilidades de pesquisas futuras e possíveis implicações gerenciais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta pesquisa apresenta estudo de caso cujo objetivo foi analisar a aceitação do Portal Inovação, identificando os fatores preditivos da intenção comportamental de uso e do comportamento de uso direcionadores da adoção da tecnologia por seus usuários via extensão do Modelo Unificado de Aceitação de Tecnologia, denominado pela sigla UTAUT (Unified Theory of Acceptance and Use of Technololgy) de Venkatesh et al. (2003). O objeto da pesquisa o Portal Inovação foi desenvolvido pelo Ministério da Ciência, Tecnologia e Inovação (MCTI) em parceria com o Centro de Gestão e Estudos Estratégicos (CGEE), Associação Brasileira de Desenvolvimento Industrial (ABDI) e Instituto Stela, visando atender às demandas do Sistema Nacional de Ciência, Tecnologia e Inovação (SNCTI) do País. Para atingir os objetivos propostos, recorreu-se às abordagens qualitativa, que foi subsidiada pelo método estudo de caso (YIN, 2005) e quantitativa, apoiada pela metodologia UTAUT, aplicada a usuários do portal e que contemplou o resultado de 264 respondentes validados. Quanto ao material de análise, utilizou-se da pesquisa bibliográfica sobre governo eletrônico (e-Gov), Internet, Sistema Nacional de Inovação, modelos de aceitação de tecnologia, dados oficiais públicos e legislações atinentes ao setor de inovação tecnológica. A técnica de análise empregada quantitativamente consistiu no uso de modelagem por equações estruturais, com base no algoritmo PLS (Partial Least Square) com bootstrap de 1.000 reamostragens. Os principais resultados obtidos demonstraram alta magnitude e significância preditiva sobre a Intenção Comportamental de Uso do Portal pelos fatores: Expectativa de Desempenho e Influência Social. Além de evidenciarem que as condições facilitadoras impactam significativamente sobre o Comportamento de Uso dos usuários. A conclusão principal do presente estudo é a de que ao considerarmos a aceitação de um portal governamental em que a adoção é voluntária, o fator social é altamente influente na intenção de uso da tecnologia, bem como os aspectos relacionados à produtividade consequente do usuário e o senso de utilidade; além da facilidade de interação e domínio da ferramenta. Tais constatações ensejam em novas perspectivas de pesquisa e estudos no âmbito das ações de e-Gov, bem como no direcionamento adequado do planejamento, monitoramento e avaliação de projetos governamentais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using techniques from Statistical Physics, the annealed VC entropy for hyperplanes in high dimensional spaces is calculated as a function of the margin for a spherical Gaussian distribution of inputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter, we elaborate on the well-known relationship between Gaussian processes (GP) and Support Vector Machines (SVM). Secondly, we present approximate solutions for two computational problems arising in GP and SVM. The first one is the calculation of the posterior mean for GP classifiers using a `naive' mean field approach. The second one is a leave-one-out estimator for the generalization error of SVM based on a linear response method. Simulation results on a benchmark dataset show similar performances for the GP mean field algorithm and the SVM algorithm. The approximate leave-one-out estimator is found to be in very good agreement with the exact leave-one-out error.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply methods of Statistical Mechanics to study the generalization performance of Support vector Machines in large data spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fe Mössbauer spectroscopy of mononuclear [Fe(II)(isoxazole)](ClO) has been studied to reveal the thermal spin crossover of Fe(II) between low-spin (S = 0) and high-spin (S = 2) states. Temperaturedependent spin transition curves have been constructed with the least-square fitted data obtained from the Mössbauer spectra measured at various temperatures between 84 and 270 K during a cooling and heating cycle. This compound exhibits an unusual temperature-dependent spin transition behaviour with T(?) = 223 and T(?) = 213 K occurring in the reverse order in comparison to those observed in SQUID observation and many other spin transition compounds. The compound has three high-spin Fe(II) sites at the highest temperature of study of which two undergo spin transitions. The compound seems to undergo a structural phase transition around the spin transition temperature, which plays a significant role in the spin crossover behaviour as well as the magnetic properties of the compound at temperatures below T. The present study reveals an increase in high-spin fraction upon heating in the temperature range below T, and an explanation is provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two energy grass species, switch grass, a North American tuft grass, and reed canary grass, a European native, are likely to be important sources of biomass in Western Europe for the production of biorenewable energy. Matching chemical composition to conversion efficiency is a primary goal for improvement programmes and for determining the quality of biomass feed-stocks prior to use and there is a need for methods which allow cost effective characterisation of chemical composition at high rates of sample through-put. In this paper we demonstrate that nitrogen content and alkali index, parameters greatly influencing thermal conversion efficiency, can be accurately predicted in dried samples of these species grown under a range of agronomic conditions by partial least square regression of Fourier transform infrared spectra (R2 values for plots of predicted vs. measured values of 0.938 and 0.937, respectively). We also discuss the prediction of carbon and ash content in these samples and the application of infrared based predictive methods for the breeding improvement of energy grasses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Pearson's correlation coefficient only tests whether the data fit a linear model. With large numbers of observations, quite small values of r become significant and the X variable may only account for a minute proportion of the variance in Y. Hence, the value of r squared should always be calculated and included in a discussion of the significance of r. 2. The use of r assumes that a bivariate normal distribution is present and this assumption should be examined prior to the study. If Pearson's r is not appropriate, then a non-parametric correlation coefficient such as Spearman's rs may be used. 3. A significant correlation should not be interpreted as indicating causation especially in observational studies in which there is a high probability that the two variables are correlated because of their mutual correlations with other variables. 4. In studies of measurement error, there are problems in using r as a test of reliability and the ‘intra-class correlation coefficient’ should be used as an alternative. A correlation test provides only limited information as to the relationship between two variables. Fitting a regression line to the data using the method known as ‘least square’ provides much more information and the methods of regression and their application in optometry will be discussed in the next article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rapid method for the analysis of biomass feedstocks was established to identify the quality of the pyrolysis products likely to impact on bio-oil production. A total of 15 Lolium and Festuca grasses known to exhibit a range of Klason lignin contents were analysed by pyroprobe-GC/MS (Py-GC/MS) to determine the composition of the thermal degradation products of lignin. The identification of key marker compounds which are the derivatives of the three major lignin subunits (G, H, and S) allowed pyroprobe-GC/MS to be statistically correlated to the Klason lignin content of the biomass using the partial least-square method to produce a calibration model. Data from this multivariate modelling procedure was then applied to identify likely "key marker" ions representative of the lignin subunits from the mass spectral data. The combined total abundance of the identified key markers for the lignin subunits exhibited a linear relationship with the Klason lignin content. In addition the effect of alkali metal concentration on optimum pyrolysis characteristics was also examined. Washing of the grass samples removed approximately 70% of the metals and changed the characteristics of the thermal degradation process and products. Overall the data indicate that both the organic and inorganic specification of the biofuel impacts on the pyrolysis process and that pyroprobe-GC/MS is a suitable analytical technique to asses lignin composition. © 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Programming (LP) is a powerful decision making tool extensively used in various economic and engineering activities. In the early stages the success of LP was mainly due to the efficiency of the simplex method. After the appearance of Karmarkar's paper, the focus of most research was shifted to the field of interior point methods. The present work is concerned with investigating and efficiently implementing the latest techniques in this field taking sparsity into account. The performance of these implementations on different classes of LP problems is reported here. The preconditional conjugate gradient method is one of the most powerful tools for the solution of the least square problem, present in every iteration of all interior point methods. The effect of using different preconditioners on a range of problems with various condition numbers is presented. Decomposition algorithms has been one of the main fields of research in linear programming over the last few years. After reviewing the latest decomposition techniques, three promising methods were chosen the implemented. Sparsity is again a consideration and suggestions have been included to allow improvements when solving problems with these methods. Finally, experimental results on randomly generated data are reported and compared with an interior point method. The efficient implementation of the decomposition methods considered in this study requires the solution of quadratic subproblems. A review of recent work on algorithms for convex quadratic was performed. The most promising algorithms are discussed and implemented taking sparsity into account. The related performance of these algorithms on randomly generated separable and non-separable problems is also reported.