957 resultados para laser materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of vibrational spectroscopic techniques to characterise historical artefacts and art works continues to grow and to provide the archaeologist and art historian with significant information with which to understand the nature and activities of previous peoples and civilizations. In addition, conservators can gain knowledge of the composition of artworks or historical objects and so are better equipped to ensure their preservation. Both infrared and Raman have been widely used. Microspectroscopy is the preferred sampling technique as it requires only a very small sample, which often can be recovered. The use of synchrotron radiation in conjunction with IR microspectroscopy is increasing because of the substantial benefits in terms of improved spatial resolution and signal-to-noise ratio. The key trend for the future is the growth in the use of portable instruments, both IR and Raman, which are becoming important because they allow non-destructive measurements to be made in situ, for example at an archaeological site or at a museum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of one dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into butanol solution. The materials were calcined at 773K and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), N2 adsorption/desorption, infrared emission spectroscopy (IES). The results demonstrated that when the molar percentage X=100*Zr/(Al+Zr) was > 30 %, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals on the surface were formed. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific technologies. The mechanism for the formation of long ZrO2/Al2O3 composite nanorods was proposed in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatially offset Raman spectroscopy (SORS) is demonstrated for the non-contact detection of energetic materials concealed within non-transparent, diffusely scattering containers. A modified design of an inverse SORS probe has been developed and tested. The SORS probe has been successfully used for the detection of various energetic substances inside different types of plastic containers. The tests have been successfully conducted under incandescent and fluorescent background lights as well as under daylight conditions, using a non-contact working distance of 6 cm. The interrogation times for the detection of the substances were less than 1 minute in each case, highlighting the suitability of the device for near real-time detection of concealed hazards in the field. The device has potential applications in forensic analysis and homeland security investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment. © 2011 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IR radiation has been studied for micro-organism inactivation of bacterial spores on metal substrates [1] and on metal and paper substrates [2]. A near-point near infrared laser water treatment apparatus for use in dental hand-pieces was also developed [3]. To date water sterilisation research using a mid-IR laser technique is very rare. According to the World Health Organisation [4], examinations for faecal indicator bacteria remain the most sensitive and specific way of assessing the hygienic quality of water. Bacteria that fall into this group are E. coli, other coliform bacteria (including E. cloacae) and to a lesser extent, faecal streptococci [5]. Protozoan cysts from organisms which cause giardiasis are the most frequently identified cause of waterborne diseases in developed countries [6,7]. The use of aerobic bacterial endospores to monitor the efficiency of various water treatments has been shown to provide a reliable and simple indicator of overall performance of water treatment[8,9].The efficacy of IR radiation for water disinfection compared to UV treatment has been further investigated in the present study. In addition FTIR spectroscopy in conjunction with Principle Component Analysis was used to characterise structural changes within the bacterial cells and endospores following IR laser treatment. Changes in carbohydrate content of E. cloacae following IR laser treatment were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This CDROM includes PDFs of presentations on the following topics: "TXDOT Revenue and Expenditure Trends;" "Examine Highway Fund Diversions, & Benchmark Texas Vehicle Registration Fees;" "Evaluation of the JACK Model;" "Future highway construction cost trends;" "Fuel Efficiency Trends and Revenue Impact"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Written information is commonly used to inform patients about their disease and treatment, but must be evidence-based and understandable to be useful. This study assessed the quality of the content and the readability of information brochures for people affected by brain tumours. We randomly selected 18 publicly available brochures. Brochures were assessed by criteria to assess the quality of content using the DISCERN instrument. Readability was tested using three commonly used formulas, which yield the reading grade level required to comprehend the brochure (sixth grade level recommended). The mean overall DISCERN score was 3.17 out of a maximum of 5 (moderate quality); only one achieved a rating greater than 4 (high quality). Only one brochure met the sixth grade readability criteria. Although brochures may have accurate content, few satisfied all of the recommended criteria to evaluate their content. Existing brochures need to be critically reviewed and simplified, consumer-focused brochures produced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the emission rate of ultrafine particles has been measured and quantified, there is very little information on the emission rates of ions and charged particles from laser printers. This paper describes a methodology that can be adopted for measuring the surface charge density on printed paper and the ion and charged particle emissions during operation of a high-emitting laser printer and shows how emission rates of ultrafine particles, ions and charged particles may be quantified using a controlled experiment within a closed chamber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection of appropriate analogue materials is a central consideration in the design of realistic physical models. We investigate the rheology of highly-filled silicone polymers in order to find materials with a power-law strain-rate softening rheology suitable for modelling rock deformation by dislocation creep and report the rheological properties of the materials as functions of the filler content. The mixtures exhibit strain-rate softening behaviour but with increasing amounts of filler become strain-dependent. For the strain-independent viscous materials, flow laws are presented while for strain-dependent materials the relative importance of strain and strain rate softening/hardening is reported. If the stress or strain rate is above a threshold value some highly-filled silicone polymers may be considered linear visco-elastic (strain independent) and power-law strain-rate softening. The power-law exponent can be raised from 1 to ~3 by using mixtures of high-viscosity silicone and plasticine. However, the need for high shear strain rates to obtain the power-law rheology imposes some restrictions on the usage of such materials for geodynamic modelling. Two simple shear experiments are presented that use Newtonian and power-law strain-rate softening materials. The results demonstrate how materials with power-law rheology result in better strain localization in analogue experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Clay Minerals Society Source Clay kaolinites, Georgia KGa-1 and KGa-2, have been subjected to particle size determinations by 1) conventional sedimentation methods, 2) electron microscopy and image analysis, and 3) laser scattering using improved algorithms for the interaction of light with small particles. Particle shape, size distribution, and crystallinity vary considerably for each kaolinite. Replicate analyses of separated size fractions showed that in the <2 µm range, the sedimentation/centrifugation method of Tanner and Jackson (1947) is reproducible for different kaolinite types and that the calculated size ranges are in reasonable agreement with the size bins estimated from laser scattering. Particle sizes determined by laser scattering must be calculated using Mie theory when the dominant particle size is less than ∼5 µm. Based on this study of two well-known and structurally different kaolinites, laser scattering, with improved data reduction algorithms that include Mie theory, should be considered an internally consistent and rapid technique for clay particle sizing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, 1.3 billion tonnes of food is lost annually due to lack of proper processing and preservation method. Drying is one of the easiest and oldest methods of food processing which can contribute to reduce that huge losses, combat hunger and promote food security. Drying increase shelf life, reduce weight and volume of food thus minimize packing, storage, and transportation cost and enable storage of food under ambient environment. However, drying is a complex process which involves combination of heat and mass transfer and physical property change and shrinkage of the food material. Modelling of this process is essential to optimize the drying kinetics and improve energy efficiency of the process. Since material properties varies with moisture content, the models should not consider constant materials properties, constant diffusion .The objective of this paper is to develop a multiphysics based mathematical model to simulate coupled heat and mass transfer during convective drying of fruit considering variable material properties. This model can be used predict the temperature and moisture distribution inside the food during drying. Effect of different drying air temperature and drying air velocity on drying kinetics has been demonstrated. The governing equations of heat and mass transfer were solved with Comsol Multiphysics 4.3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of carbon in primitive extraterrestrial materials has long been considered a useful indicator of prevailing geochemical conditions early in the formation of the Solar System. A recent addition to the suite of primitive materials available for study by cosmochemists includes particles collected from the stratosphere called chondritic porous (CP) aggregates1. Carbon-rich CP aggregates are less abundant in stratospheric collections and contain many low-temperature phases (such as layer silicates) as minor components2,3. We describe here the nature of the most abundant carbon phase in a carbon-rich CP aggregate (sample no. W7029* A) collected from the stratosphere as part of the Johnson Space Center (JSC) Cosmic Dust Program4. By comparison with experimental and terrestrial studies of poorly graphitized carbon (PGC), we show that the graphitization temperature, or the degree of ordering in the PGC, may provide a useful cosmothermometer for primitive extraterrestrial materials.