930 resultados para isolated transition metal ions
Resumo:
Pyrophosphatase activity of rat osseous plate alkaline phosphatase was studied at different concentrations of calcium and magnesium ions. with the aim of characterizing the modulation of enzyme activity by these metals. In the absence of metal ions, the enzyme hydrolysed pyrophosphate following Michaelian kinetics with a specific activity of 36.7 U/mg and K-0.5 = 88 mu M. In the presence of low concentrations (0.1 mM) of magnesium (or calcium) ions, the enzyme also exhibited Michaclian kinetics for the hydrolysis of pyrophosphate, but a significant increase in specific activity (123 U/mg) was observed. K-m values remained almost unchanged. Quite different behavior occurred in the presence of 2 mM magnesium (or calcium) ions. In addition to low-affinity sites (K-0.5 = 40 and 90 mu M, for magnesium and calcium, respectively), high-affinity sites were also observed with K-0.5 values 100-fold lower. The high-affinity sites observed in the presence of calcium ions represented about 10% of those observed for magnesium ions. This was correlated with the fact that only magnesium ions triggered conformational changes yielding a fully active enzyme. These results suggested that the enzyme could hydrolyse pyrophosphate, even at physiological concentrations (4 mu M), since magnesium concentrations are high enough to trigger conformational changes increasing the enzyme activity. A model, suggesting the involvement of magnesium ions in the hydrolysis of pyrophosphate by rat osseous plate alkaline phosphatase is proposed. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
This paper deals with the development and optimization of an analytical procedure using ultrafiltration and a flow-injection system, and its application in in-situ experiments to characterize the lability and availability of metal species in humic-rich hydrocolloids. The on-line system consists of a tangential flow ultrafiltration device equipped with a 3-kDa filtration membrane. The concentration of free ions in the filtrate was determined by atomic-absorption spectrometry, assuming that metals not complexed by aquatic humic substances (AHS) were separated from the complexed species (M-AHS) retained by the membrane. For optimization, exchange experiments using Cu(II) solutions and AHS solutions doped with the metal ions Ni(II), Mn(II), Fe(III), Cd (II), and Zn(II) were carried out to characterize the stability of the metal-AHS complexes. The new procedure was then applied in-situ at a tributary of the Ribeira do Iguape river (Iguape, São Paulo State, Brazil) and evaluated using the ions Fe(III) and Mn(II), which are considered to be essential constituents of aquatic systems. From the exchange between metal-natural organic matter (M-NOM) and the Cu(II) ions it was concluded that Cu(II) concentrations > 485 mu g L(-1) were necessary to obtain maximum exchange of the complexes Mn-NOM and Fe-NOM, corresponding to 100% Mn and 8% Fe. Moreover, the new analytical procedure is simple and opens up new perspectives for understanding the complexation, transport, stability, and lability of metal species in humic-rich aquatic environments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new procedure was developed for the in situ characterization of the lability of metal species in aquatic systems by using a system equipped with a diffusion membrane and cellulose organomodified with p-aminobenzoic acid groups (DM-Cell-PAB). To this end, the DM-Cell-PAB system was prepared by adding cellulose organomodified with p-aminobenzoic acid groups (Cell-PAB) to pre-purified cellulose bags. After the DM-Cell-PAB system was sealed, it was examined in the laboratory to evaluate the influence of complexation time, mass of exchanger, pH, metal ions (Cu, Cd, Fe, Mn, and Ni), and concentration of organic matter on the relative lability of metal species. It was found that the pH and kinetics strongly influence the process of metal complexation by the DM-Cell-PAB system. At all pH levels, Cd, Mn, and Ni showed lower complexation with Cell-PAB resin than Cu and Fe metals. Note that relative lability of metals complexed to aquatic humic substances (AHS) in the presence of Cell-PAB resin showed the following order: Cu congruent to Fe >> Ni > Mn=Cd. The results presented here also indicate that increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents the synthesis and characterization of SiO2:metal (Ni, Co, Ag, and Fe) nanocomposites processed by the polymerizable complex method. The polymeric precursor solutions obtained were characterized by means of FT-Raman and C-13 NMR spectroscopy. The results show the formation of a hybrid polymer with carbon and silicon in the macromolecule chain and the transition metal cation arrested within this polymeric chain. The nanocomposites are formed during the controlled polymeric precursor pyrolysis. The reduction of the metal cation is promoted by the CO/CO2 atmosphere resulting from the pyrolysis of the organic material. Microstructural characterization, performed by TEM and X-ray diffraction (XRD), showed that the nanocomposites are formed by metal nanoparticles embedded in a amorphous matrix formed by SiO2 and carbon. In the SiO2:Fe system, Fe3C was also detected by XRD.
Resumo:
Alkaline phosphatase from rat osseous plate is allosterically modulated by ATP, calcium and magnesium at pH 7.5. At pH 9.4, the hydrolysis of ATP and PNPP follows Michaelis-Menten kinetics with K0.5 values of 154 muM and 42 muM, respectively. However, at pH 7.5 both substrates exhibit more complex saturation curves, while only ATP exhibited site-site interactions. Ca2+-ATP and Mg2+-ATP were effective substrates for the enzyme, while the specific activity of the enzyme for the hydrolysis of ATP at pH 7.5 was 800-900 U/mg and was independent of the ion species. ATP, but not PNPP, was hydrolyzed slowly in the absence of metal ions with a specific activity of 140 U/mg. These data demonstrate that in vitro and at pH 7.5 rat osseous plate alkaline phosphatase is an active calcium or magnesium-activated ATPase.
Resumo:
Alkylsulphinylpyridine ligands containing three potential donor centres: N, S and O atoms and two complexes of general formula trans-[PtCl2(PEt3)PySOR)] (R = Me and Pr-n) were prepared and characterized by elemental analysis, i.r. spectroscopy, H-1- and P-31-n.m.r. and X-ray crystallography. The ambidentate ligands act in both situations as monodentate ligands, bonded to the metal exclusively through the nitrogen atom. The crystal structures revealed the occurrence of discrete molecules and, in both complexes, the Pt atoms are coordinated in square planar arrangements by two chloride ions, in a trans configuration, by the pyridine nitrogen atom, and by the phosphine P atom. The oxygen atoms do not take part in the complexation scheme.
Resumo:
An improved on-site characterization of humic-rich hydrocolloids and their metal species in aquatic environments was the goal of the present approach. Both ligand exchange with extreme chelators ( diethylenetetraaminepentaacetic acid ( DTPA), ethylendiaminetetraacetic acid ( EDTA)) and metal exchange with strongly competitive cations (Cu(II)) were used on-site to characterize the conditional stability and availability of colloidal metal species in a humic-rich German bogwater lake ( Venner Moor, Munsterland). A mobile time-controlled tangential-flow ultrafiltration technique (cut-off: 1 kDa) was applied to differentiate operationally between colloidal metal species and free metal ions, respectively. DOC ( dissolved organic carbon) and metal determinations were carried out off-site using a home-built carbon analyzer and conventional ICP-OES ( inductively-coupled plasma-optical emission spectrometry), respectively. From the metal exchange equilibria obtained on-site the kinetic and thermodynamic stability of the original metal species ( Fe, Mn, Zn) could be characterized. Conditional exchange constants K ex obtained from aquatic metal species and competitive Cu(II) ions follow the order Mn > Zn >> Fe. Obviously, Mn and Zn bound to humic-rich hydrocolloids are very strongly competed by Cu( II) ions, in contrast to Fe which is scarcely exchangeable. The exchange of aquatic metal species (e.g. Fe) by DTPA/EDTA exhibited relatively slow kinetics but rather high metal availabilities, in contrast to their Cu(II) exchange.
Resumo:
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60-65 degrees C. The apparent K (m) with citrus pectin was 1.46 mg/ml and the V (max) was 2433.3 mu mol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50 degrees C for 1 h and showed a half-life of 10 min at 60 degrees C. Polygalacturonase was stable at pH 5.0-5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.
Resumo:
The compounds [Cu(N-3)(NSC)(tmen)](n) (1), [Cu(N-3)(NCO)(tmen)](n) (2) and [Cu(N-3)(NCO)(tmen)](2) (3) (tmen = N,N,N',N'-tetramethylethylenediamine) were synthesized and studied by i.r. spectroscopy. Single crystals of compounds (1) and (3) were obtained and characterized by X-ray diffraction. The structure of compound (1) consists of neutral chains of copper(II) ions bridged by a single azido ligand showing the asymmetric end-to-end coordination fashion. Each copper ion is also surrounded by the other three nitrogen atoms: two from one N,N,N',N'-tetramethylethylenediamine and one from a terminal bonded thiocyanate group. Compound (2) decomposes slowly in acetone and the product formed [Cu(N-3)(NCO)(tmen)](2) (3) crystallizes in the monoclinic system (P2(1)). The structure of (3) consists of dimeric units in which the Cu atoms are penta-coordinated and connected by p(1,3) bridging azido and cyanate ligands. In both cases the five coordinated atoms give rise to a slightly distorted square-based pyramid coordination geometry at each copper ion. The thermal behavior of [Cu(N-3)(NSC)(tmen)](n) (1) and [Cu(N-3)(NCO)(tmen)](n) (2) were investigated and the final decomposition products were identified by X-ray powder diagrams.
Resumo:
Labile metal species in aquatic humic substances (HSs) were characterized by ion exchange on cellulose phosphate (CellPhos) by applying an optimized batch procedure. The HSs investigated were pre-extracted from humic-rich waters by ultrafiltration and a resin XAD 8 procedure. The HS-metal species studied were formed by complexation with Cd(II), Ni(II), Cu(II), Mn(II) and Pb(II) as a function of time and the ratio ions to HSs. The kinetics and reaction order of this exchange process were studied. At the beginning (<3 min), the labile metal fractions are separated relatively quickly. After 3 min, the separation of the metal ions proceeds with uniform half-lives of about 12-14 min, revealing rather slow first-order kinetics. The metal exchange between HSs and CellPhos exhibited the following order of metal lability with the studied HSs: Cu > Pb > Mn > Ni > Cd. The required metal determinations were carried out by atomic absorption spectrometry.
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
Resumo:
Structural, electrochemical and spectroscopic data of a new dinuclear copper(II) complex with (+/-)-2-(p- methoxyphenoxy) propionic acid are reported. The complex {tetra-mu-[(+/-)-2-(p-methoxyphenoxy)propionato-O,O']-bis( aqua) dicopper(II)} crystallizes in the monoclinic system, space group P2(1)/n with a = 14.149(1) angstrom, b = 7.495(1) angstrom, c = 19.827(1) angstrom, beta = 90.62(1) and Z = 4. X-ray diffraction data show that the two copper(II) ions are held together through four carboxylate bridges, coordinated as equatorial ligands in square pyramidal geometry. The coordination sphere around each copper ion is completed by two water molecules as axial ligands. Thermogravimetric data are consistent with such results. The ligand has an L' type shape due to the angle formed by the beta-carbon of the propionic chain and the linked p-methoxyphenoxy group. This conformation contributes to the occurrence of a peculiar structure of the complex. The complex retains its dinuclear nature when dissolved in acetonitrile, but it decomposes into the corresponding mononuclear species if dissolved in ethanol, according to the EPR measurements. Further, cyclic voltammograms of the complex in acetonitrile show that the dinuclear species maintains the same structure, in agreement with the EPR data in this solvent. The voltammogram shows two irreversible reduction waves at E-pc = -0.73 and -1.04 V vs. Ag/AgCl assigned to the Cu(II)/ Cu(I) and Cu(I)/Cu degrees redox couples, respectively, and two successive oxidation waves at E-pa = -0.01 and +1.41 V vs. Ag/AgCl, assigned to the Cu degrees/Cu(I) and Cu( I)/Cu( II) redox couples, respectively, in addition to the oxidation waves of the carboxylate ligand.
Resumo:
Hot-filament metal oxide deposition (HFMOD) is a variant of conventional hot-filament chemical vapor deposition (HFCVD) recently developed in our laboratory and successfully used to obtain high-quality, uniform films of MOx WOx and VOx. The method employs the controlled oxidation of a filament of a transition metal heated to 1000 degrees C or more in a rarefied oxygen atmosphere (typically, of about 1 Pa). Metal oxide vapor formed on the surface of the filament is transported a few centimetres to deposit on a suitable substrate. Key system parameters include the choice of filament material and diameter, the applied current and the partial pressures of oxygen in the chamber. Relatively high film deposition rates, such as 31 nm min(-1) for MoOx, are obtained. The film stoichiometry depends on the exact deposition conditions. MoOx films, for example, present a mixture of MoO2 and MoO3 phases, as revealed by XPS. As determined by Li+ intercalation using an electrochemical cell, these films also show a colouration efficiency of 19.5 cm(2) C-1 at a wavelength of 700 nm. MOx and WOx films are promising in applications involving electrochromism and characteristics of their colouring/bleaching cycles are presented. The chemical composition and structure of VOx films examined using IRRAS (infrared reflection-absorption spectroscopy), RBS (Rutherford backscattering spectrometry) and XPS (X-ray photoelectron spectrometry) are also presented. (c) 2007 Elsevier B.V. All rights reserved.