982 resultados para irradiation non-uniformity
Resumo:
Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.
Resumo:
Cougars, Grannies, Evil Stepmothers, and Menopausal Hot Flashers: Roles, Representations of Age and the Non-traditional Romance Heroine is an examination of the stereotyped roles of age and the under-representation of women over forty as worthy protagonists in romance fiction.
Resumo:
OBJECTIVE To compare the physical activity levels of overweight and non overweight 3- to 5-y-old children while attending preschool. A secondary aim was to evaluate weight-related differences in hypothesized parental determinants of child physical activity behavior. DESIGN: Cross-sectional study. SUBJECTS A total of 245, 3- to 5-y-olds (127 girls, 118 boys) and their parent(s) (242 mothers, 173 fathers) recruited from nine preschools. Overweight status determined using the age- and sex-specific 85th percentile for body mass index (BMI) from CDC Growth Charts. MEASUREMENTS Physical activity during the preschool day was assessed on multiple days via two independent objective measuresFdirect observation using the observation system for recording activity in preschools (OSRAP) and real-time accelerometry using the MTI/CSA 7164 accelerometer. Parents completed a take-home survey assessing sociodemographic information, parental height and weight, modeling of physical activity, support for physical activity, active toys and sporting equipment at home, child’s television watching, frequency of park visitation, and perceptions of child competence. RESULTS Overweight boys were significantly less active than their nonoverweight peers during the preschool day. No significant differences were observed in girls. Despite a strong association between childhood overweight status and parental obesity, no significant differences were observed for the hypothesized parental influences on physical activity behavior. CONCLUSIONS Our results suggest that a significant proportion of overweight children may be at increased risk for further gains in adiposity because of low levels of physical activity during the preschool day.
Resumo:
The main purpose of this article is to gain an insight into the relationships between variables describing the environmental conditions of the Far Northern section of the Great Barrier Reef, Australia. Several of the variables describing these conditions had different measurement levels and often they had non-linear relationships. Using non-linear principal component analysis, it was possible to acquire an insight into these relationships. Furthermore, three geographical areas with unique environmental characteristics could be identified.
Resumo:
In the current era of global economic instability, business and industry have already identified a widening gap between graduate skills and employability. An important element of this is the lack of entrepreneurial skills in graduates. This Teaching Fellowship investigated two sides of a story about entrepreneurial skills and their teaching. Senior players in the innovation commercialisation industry, a high profile entrepreneurial sector, were surveyed to gauge their needs and experiences of graduates they employ. International contexts of entrepreneurship education were investigated to explore how their teaching programs impart the skills of entrepreneurship. Such knowledge is an essential for the design of education programs that can deliver the entrepreneurial skills deemed important by industry for future sustainability. Two programs of entrepreneurship education are being implemented at QUT that draw on the best practice exemplars investigated during this Fellowship. The QUT Innovation Space (QIS) focuses on capturing the innovation and creativity of students, staff and others. The QIS is a physical and virtual meeting and networking space; a connected community enhancing the engagement of participants. The Q_Hatchery is still embryonic; but it is intended to be an innovation community that brings together nascent entrepreneurial businesses to collaborate, train and support each other. There is a niche between concept product and business incubator where an experiential learning environment for otherwise isolated ‘garage-at-home’ businesses could improve success rates. The QIS and the Q_Hatchery serve as living research laboratories to trial the concepts emerging from the skills survey. The survey of skills requirements of the innovation commercialisation industry has produced a large and high quality data set still being explored. Work experience as an employability factor has already emerged as an industry requirement that provides employee maturity. Exploratory factor analysis of the skills topics surveyed has led to a process-based conceptual model for teaching and learning higher-order entrepreneurial skills. Two foundational skills domains (Knowledge, Awareness) are proposed as prerequisites which allow individuals with a suite of early stage entrepreneurial and behavioural skills (Pre-leadership) to further leverage their careers into a leadership role in industry with development of skills around higher order elements of entrepreneurship, management in new business ventures and progressing winning technologies to market. The next stage of the analysis is to test the proposed model through structured equation modelling. Another factor that emerged quickly from the survey analysis broadens the generic concept of team skills currently voiced in Australian policy documents discussing the employability agenda. While there was recognition of the role of sharing, creating and using knowledge in a team-based interdisciplinary context, the adoption and adaptation of behaviours and attitudes of other team members of different disciplinary backgrounds (interprofessionalism) featured as an issue. Most undergraduates are taught and undertake teamwork in silos and, thus, seldom experience a true real-world interdisciplinary environment. Enhancing the entrepreneurial capacity of Australian industry is essential for the economic health of the country and can only be achieved by addressing the lack of entrepreneurial skills in graduates from the higher education system. This Fellowship has attempted to address this deficiency by identifying the skills requirements and providing frameworks for their teaching.
Resumo:
Objective: The present study aims to investigate non-English-speaking background (NESB) patients’ satisfaction with hospital ED service and compare it with that of English-speaking background (ESB) patients. Methods: A cross-sectional survey was conducted at the ED of an adult tertiary referral hospital in Queensland, Australia. Patients assigned an Australasian Triage Scale score of 3, 4 or 5 were surveyed in the ED, before and after their ED service. Pearson χ2- test and multivariate logistic regression analyses were performed to examine the differences between the ESB and NESB groups in terms of patient-reported satisfaction. Results: In total, 828 patients participated in the present study. Although the overall satisfaction with the service was high – 95.1% (ESB) and 90.5% (NESB) – the NESB patients who did not use an interpreter were less satisfied with their ED service than the ESB patients (odds ratio 0.5, 95% confidence interval 0.3–0.8, P = 0.013). The promptness of service received the lowest satisfaction rates (ESB 85.4% [82.4–88.0], NESB 74.5% [68.5– 79.7], P < 0.001), whereas courtesy and friendliness received the highest satisfaction rates (ESB 98.8 [97.6–99.4], NESB 97.0 [93.9–98.5], P = 0.063). All participants reported the promptness of service (33.5%), quality and professional care (18.5%) and communication (17.6%) as the most important elements of ED service. Conclusion: The NESB patients were significantly less satisfied than the ESB patients with the ED service. Use of an interpreter improved the NESB patients’ level of satisfaction. Further research is required to examine what NESB patients’ expectations of ED service are.
Resumo:
In Kimtran Pty Ltd v Downie [2003] QDC 043 the court allowed in part an appeal from the refusal by the Queensland Building Tribunal to order the respondent liquidators pay the appellants' costs of proceedings in the Tribunal. The decision involved an examination of authorities which have considered the circumstances in which it is in the interests of justice to make an order for costs against a non-party.
Resumo:
Distributed Network Protocol Version 3 (DNP3) is the de-facto communication protocol for power grids. Standard-based interoperability among devices has made the protocol useful to other infrastructures such as water, sewage, oil and gas. DNP3 is designed to facilitate interaction between master stations and outstations. In this paper, we apply a formal modelling methodology called Coloured Petri Nets (CPN) to create an executable model representation of DNP3 protocol. The model facilitates the analysis of the protocol to ensure that the protocol will behave as expected. Also, we illustrate how to verify and validate the behaviour of the protocol, using the CPN model and the corresponding state space tool to determine if there are insecure states. With this approach, we were able to identify a Denial of Service (DoS) attack against the DNP3 protocol.
Resumo:
Nucleation and growth of highly crystalline silicon nanoparticles in atmospheric-pressure low-temperature microplasmas at gas temperatures well below the Si crystallization threshold and within a short (100 μs) period of time are demonstrated and explained. The modeling reveals that collision-enhanced ion fluxes can effectively increase the heat flux on the nanoparticle surface and this heating is controlled by the ion density. It is shown that nanoparticles can be heated to temperatures above the crystallization threshold. These combined experimental and theoretical results confirm the effective heating and structure control of Si nanoparticles at atmospheric pressure and low gas temperatures.
Resumo:
Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.
Resumo:
The present study compares the effects of two different material processing techniques on modifying hydrophilic SiO2 nanoparticles. In one method, the nanoparticles undergo plasma treatment by using a custom-developed atmospheric-pressure non-equilibrium plasma reactor. With the other method, they undergo chemical treatment which grafts silane groups onto their surface and turns them into hydrophobic. The treated nanoparticles are then used to synthesize epoxy resin-based nanocomposites for electrical insulation applications. Their characteristics are investigated and compared with the pure epoxy resin and nanocomposite fabricated with unmodified nanofillers counterparts. The dispersion features of the nanoparticles in the epoxy resin matrix are examined through scanning electron microscopy (SEM) images. All samples show evidence that the agglomerations are smaller than 30 nm in their diameters. This indicates good dispersion uniformity. The Weibull plot of breakdown strength and the recorded partial discharge (PD) events of the epoxy resin/plasma-treated hydrophilic SiO2 nanocomposite (ER/PTI) suggest that the plasma-treated specimen yields higher breakdown strength and lower PD magnitude as compared to the untreated ones. In contrast, surprisingly, lower breakdown strength is found for the nanocomposite made by the chemically treated hydrophobic particles, whereas the PD magnitude and PD numbers remain at a similar level as the plasma-treated ones.
Resumo:
Nanocomposite dielectrics hold a promising future for the next generation of insulation materials because of their excellent physical, chemical, and dielectric properties. In the presented study, we investigate the use of plasma processing technology to further enhance the dielectric performance of epoxy resin/SiO2 nanocomposite materials. The SiO2 nanoparticles are treated with atmospheric-pressure non-equilibrium plasma prior to being added into the epoxy resin host. Fourier transform infrared spectroscopy (FTIR) results reveal the effects of the plasma process on the surface functional groups of the treated nanoparticles. Scanning electron microscopy (SEM) results show that the plasma treatment appreciably improves the dispersion uniformity of nanoparticles in the host polymer. With respect to insulation performance, the epoxy/plasma-treated SiO2 specimen shows a 29% longer endurance time than the epoxy/untreated SiO2 nanocomposite under electrical aging. The Weibull plots of the dielectric breakdown field intensity suggest that the breakdown strength of the nanocomposite with the plasma pre-treatment on the nanoparticles is improved by 23.3%.
Resumo:
Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasmaglow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasmaglow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.
Resumo:
The advantages of using low-temperature plasma environments for postprocessing of dense nanotube arrays are shown by means of multiscale hybrid numerical simulations. By controlling plasma-extracted ion fluxes and varying the plasma and sheath parameters, one can selectively coat, dope, or functionalize different areas on nanotube surfaces. Conditions of uniform deposition of ion fluxes over the entire nanotube surfaces are obtained for different array densities. The plasma route enables a uniform processing of lateral nanotube surfaces in very dense (with a step-to-height ratio of 1:4) arrays, impossible via the neutral gas process wherein radical penetration into the internanotube gaps is poor. © 2006 American Institute of Physics.
Resumo:
Random blinking is a major problem on the way to successful applications of semiconducting nanocrystals in optoelectronics and photonics, which until recently had neither a practical solution nor a theoretical interpretation. An experimental breakthrough has recently been made by fabricating non-blinking Cd1-xZnxSe/ZnSe graded nanocrystals [Wang et al., Nature, 2009, 459, 686]. Here, we (1) report an unequivocal and detailed theoretical investigation to understand the properties (e.g., profile) of the potential-well and the distribution of Zn content with respect to the nanocrystal radius and (2) develop a strategy to find the relationship between the photoluminescence (PL) energy peaks and the potential-well due to Zn distribution in nanocrystals. It is demonstrated that the non-square-well potential can be varied in such a way that one can indeed control the PL intensity and the energy-level difference (PL energy peaks) accurately. This implies that one can either suppress the blinking altogether, or alternatively, manipulate the PL energy peaks and intensities systematically to achieve a controlled non-random intermittent luminescence. The approach developed here is based on the ionization energy approximation and as such is generic and can be applied to any non-free-electron nanocrystals.