904 resultados para iron promoted sulphated zirconia
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The synthesis, characterization and catalytic activity of the cationic iron porphyrins Fe[M(4-N-MePy)TDCPP]Cl-2 and Fe[M(4-N-MePy)TFPP]Cl-2 in the epoxidation of (Z)-cyclooctene by PhIO in homogeneous solution and supported on silica gel (SG), imidazole propyl gel (IPG) or SG modified with 2-(4-sulfonatophenyl)ethyl groups (SiSO3) have been accomplished. When supported on IPG, both cationic FeP bind to the support via Fe-imidazole coordination. Fe[M(4-N-MePy)TDCPP]IPG contains a mixture of low-spin bis-coordinated (FeP)-P-III and high-spin mono-coordinated (FeP)-P-III species, whereas Fe[M(4-N-MePy)TFPP]IPG only contains high-spin mono-coordinated (FeP)-P-III. These FePIPG catalysts also contain (FeP)-P-II species, whose presence was confirmed by EPR spectroscopy using NO as a paramagnetic probe. Both cationic FePs coordinate to SG through Fe-O ligation and they are present as high-spin (FeP)-P-III species. The cationic FePs supported on SiSO3- are also high-spin (FeP)-P-III species and they bind to the support via electrostatic interaction between the 4-N-methylpyridyl groups and the SO3- groups present on the matrix. In homogeneous solution, both Fe[M(4-N-MePy)TDCPP]Cl-2 and Fe[M(4-N-MePy)TFPP]Cl-2 have similar catalytic activity to Fe(TDCPP)Cl and Fe(TFPP)Cl, leading to cis-epoxycyclooctane yields of 92%. When supported on inorganic matrices,both FePs lead to epoxide yields comparable to their homogeneous analogues and their anchoring enables catalyst recovery and re-use. Recycling of Fe[M(4-N-MePy)TDCPP]SiSO3- shows that this FeP maintains its activity in a second reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.
Resumo:
Ashcroft model potential has been used to compute phonon dispersion relations along the three principal symmetry directions, i.e. [k00], [kk0] and [kkk] for alpha-iron and barium. The computed phonons gave a reasonable agreement with the experimental ones in all the three principal summetry directions expect for the T-2 branch in [KK0] direction where the present study failed to reproduce the experimental findings.
Resumo:
Electroactive films of iron tetrasulfonated phthalocyanine (FeTsPc) were assembled via the electrostatic layer-by-layer technique (LBL), in which FeTsPc layers were alternated with the polycationic poly(allylamine hydrochloride) (PAN). The multilayer formation was monitored via UV-Vis spectroscopy by measuring the increase in the Q Band of FeTsPc at 676 nm. Film thickness was estimated by profilometry as ca. 10 Angstrom per bilayer. Fourier transform infrared and UV-Vis absorption spectroscopy suggested specific interactions between FeTsPc and PAR Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 0.92 mV and 0.70 mV, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/AgNO3).
Resumo:
Magnetic properties of acicular (similar to60 and similar to200 nm) iron particles, obtained by reduction of alumina-coated goethite particles, are reported. X-ray diffraction and Mossbauer spectroscopy showed that the particles consist of a alpha-Fe core and a thin surface layer of maghemite. Magnetization data indicated an improvement of similar to28% in the saturation magnetization, coercive field, and squareness for particles with similar to60 nm. This magnetic property enhancement of the present particles, whose size is 40% smaller than those commercially available, could result in a similar decrease of the bit-size for higher density of magnetic media.
Resumo:
The electrochemical oxidation of (benzylideneacetone)dicarbonyl(phosphine)iron(0) and benzylideneacetone)dicarbonyl(phosphite)iron(0) complexes was studied by cyclic voltammetry and controlled potential electrolysis in 0.5 M NaClO4 (dimethyl formamide). The results suggest that the electrode process involves a complicated mechanism, the species formed in the first oxidation step being highly unstable and its decomposition producing free benzylideneacetone, free phosphine or phosphite, solvated iron(II) species and carbon monoxide which adsorbs on the platinum electrode. A linear relationship between E(p/2)ox and the ligand parameter P(L) was obtained with E(s) = 0.41 V and beta = 0.964, where E(s) and beta-denote electron-richness and polarizability of the metal centre, respectively.
Resumo:
Djenkolate complex of iron, [Fe(C(7)H(12)N(2)O(4)S(2))]. H(2)O, has been synthesized by the reaction of potassium djenkolate with Fe(SO(4)). 7H(2)O under nitrogen atmosphere. X-Ray diffraction pattern has been indexed in orthorhombic system with lattice parameters: a=11.24 Angstrom, b=7.50 Angstrom and c=6.96 Angstrom. According to IR spectroscopy, coordination is performed through COO(-) and NH(2) groups. An octahedral geometry for Fe ion is suggested by UV-Vis and Mossbauer spectroscopies. Thermal decomposition leads to the formation of Fe(2)O(3) (hematite). The compound shows poor solubility in water and in common organic solvents. (C) 2000 Elsevier B.V. S.A. All rights reserved.