957 resultados para ion mobility spectrometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé grand public :Le cerveau se compose de cellules nerveuses appelées neurones et de cellules gliales dont font partie les astrocytes. Les neurones communiquent entre eux par signaux électriques et en libérant des molécules de signalisation comme le glutamate. Les astrocytes ont eux pour charge de capter le glucose depuis le sang circulant dans les vaisseaux sanguins, de le transformer et de le transmettre aux neurones pour qu'ils puissent l'utiliser comme source d'énergie. L'astrocyte peut ensuite utiliser ce glucose de deux façons différentes pour produire de l'énergie : la première s'opère dans des structures appelées mitochondries qui sont capables de produire plus de trente molécules riches en énergie (ATP) à partir d'une seule molécule de glucose ; la seconde possibilité appelée glycolyse peut produire deux molécules d'ATP et un dérivé du glucose appelé lactate. Une théorie couramment débattue propose que lorsque les astrocytes capturent le glutamate libéré par les neurones, ils libèrent en réponse du lactate qui servirait de base énergétique aux neurones. Cependant, ce mécanisme n'envisage pas une augmentation de l'activité des mitochondries des astrocytes, ce qui serait pourtant bien plus efficace pour produire de l'énergie.En utilisant la microscopie par fluorescence, nous avons pu mesurer les changements de concentrations ioniques dans les mitochondries d'astrocytes soumis à une stimulation glutamatergique. Nous avons démontré que les mitochondries des astrocytes manifestent des augmentations spontanées et transitoires de leur concentrations ioniques, dont la fréquence était diminuée au cours d'une stimulation avec du glutamate. Nous avons ensuite montré que la capture de glutamate augmentait la concentration en sodium et acidifiait les mitochondries des astrocytes. En approfondissant ces mécanismes, plusieurs éléments ont suggéré que l'acidification induite diminuerait le potentiel de synthèse d'énergie d'origine mitochondriale et la consommation d'oxygène dans les astrocytes. En résumé, l'ensemble de ces travaux suggère que la signalisation neuronale impliquant le glutamate dicte aux astrocytes de sacrifier temporairement l'efficacité de leur métabolisme énergétique, en diminuant l'activité de leurs mitochondries, afin d'augmenter la disponibilité des ressources énergétiques utiles aux neurones.Résumé :La remarquable efficacité du cerveau à compiler et propager des informations coûte au corps humain 20% de son budget énergétique total. Par conséquent, les mécanismes cellulaires responsables du métabolisme énergétique cérébral se sont adéquatement développés pour répondre aux besoins énergétiques du cerveau. Les dernières découvertes en neuroénergétique tendent à démontrer que le site principal de consommation d'énergie dans le cerveau est situé dans les processus astrocytaires qui entourent les synapses excitatrices. Un nombre croissant de preuves scientifiques a maintenant montré que le transport astrocytaire de glutamate est responsable d'un coût métabolique important qui est majoritairement pris en charge par une augmentation de l'activité glycolytique. Cependant, les astrocytes possèdent également un important métabolisme énergétique de type mitochondrial. Par conséquent, la localisation spatiale des mitochondries à proximité des transporteurs de glutamate suggère l'existence d'un mécanisme régulant le métabolisme énergétique astrocytaire, en particulier le métabolisme mitochondrial.Afin de fournir une explication à ce paradoxe énergétique, nous avons utilisé des techniques d'imagerie par fluorescence pour mesurer les modifications de concentrations ioniques spontanées et évoquées par une stimulation glutamatergique dans des astrocytes corticaux de souris. Nous avons montré que les mitochondries d'astrocytes au repos manifestaient des changements individuels, spontanés et sélectifs de leur potentiel électrique, de leur pH et de leur concentration en sodium. Nous avons trouvé que le glutamate diminuait la fréquence des augmentations spontanées de sodium en diminuant le niveau cellulaire d'ATP. Nous avons ensuite étudié la possibilité d'une régulation du métabolisme mitochondrial astrocytaire par le glutamate. Nous avons montré que le glutamate initie dans la population mitochondriale une augmentation rapide de la concentration en sodium due à l'augmentation cytosolique de sodium. Nous avons également montré que le relâchement neuronal de glutamate induit une acidification mitochondriale dans les astrocytes. Nos résultats ont indiqué que l'acidification induite par le glutamate induit une diminution de la production de radicaux libres et de la consommation d'oxygène par les astrocytes. Ces études ont montré que les mitochondries des astrocytes sont régulées individuellement et adaptent leur activité selon l'environnement intracellulaire. L'adaptation dynamique du métabolisme énergétique mitochondrial opéré par le glutamate permet d'augmenter la quantité d'oxygène disponible et amène au relâchement de lactate, tous deux bénéfiques pour les neurones.Abstract :The remarkable efficiency of the brain to compute and communicate information costs the body 20% of its total energy budget. Therefore, the cellular mechanisms responsible for brain energy metabolism developed adequately to face the energy needs. Recent advances in neuroenergetics tend to indicate that the main site of energy consumption in the brain is the astroglial process ensheating activated excitatory synapses. A large body of evidence has now shown that glutamate uptake by astrocytes surrounding synapses is responsible for a significant metabolic cost, whose metabolic response is apparently mainly glycolytic. However, astrocytes have also a significant mitochondrial oxidative metabolism. Therefore, the location of mitochondria close to glutamate transporters raises the question of the existence of mechanisms for tuning their energy metabolism, in particular their mitochondrial metabolism.To tackle these issues, we used real time imaging techniques to study mitochondrial ionic alterations occurring at resting state and during glutamatergic stimulation of mouse cortical astrocytes. We showed that mitochondria of intact resting astrocytes exhibited individual spontaneous and selective alterations of their electrical potential, pH and Na+ concentration. We found that glutamate decreased the frequency of mitochondrial Na+ transient activity by decreasing the cellular level of ATP. We then investigated a possible link between glutamatergic transmission and mitochondrial metabolism in astrocytes. We showed that glutamate triggered a rapid Na+ concentration increase in the mitochondrial population as a result of plasma-membrane Na+-dependent uptake. We then demonstrated that neuronally released glutamate also induced a mitochondrial acidification in astrocytes. Glutamate induced a pH-mediated and cytoprotective decrease of mitochondrial metabolism that diminished oxygen consumption. Taken together, these studies showed that astrocytes contain mitochondria that are individually regulated and sense the intracellular environment to modulate their own activity. The dynamic regulation of astrocyte mitochondrial energy output operated by glutamate allows increasing oxygen availability and lactate production both being beneficial for neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recrystallization rims are a common feature of zircon crystals that underwent metamorphism. We present a microstructural and microchemical study of partially recrystallized zircon grains collected in polymetamorphic migmatites (Valle d'Arbedo, Ticino, Switzerland). The rims are bright in cathodo-luminescence (CL), with sharp and convex contacts characterized by inward-penetrating embayments transgressing igneous zircon cores. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) data and transmission electron microscopy (TEM) imaging indicate that the rims are chemically and microstructurally different from the cores. The rims are strongly depleted in REE, with concentrations up to two orders of magnitude lower than in the cores, indicating a significant loss of REE during zircon recrystallization. Enrichment in non-formula elements, such as Ca, has not been observed in the rims. The microstructure of zircon cores shows a dappled intensity at and below the 100 nm scale, possibly due to radiation damage. Other defects such as pores and dislocations are absent in the core except at healed cracks. Zircon rims are mostly dapple-free, but contain nanoscale pores and strain centers, interpreted as fluid inclusions and chemical residues, respectively. Sensitive high-resolution ion microprobe (SHRIMP) U-Pb ages show that the recrystallization of the rims took place >200 Ma ago when the parent igneous zircon was not metamict. The chemical composition and the low-Ti content of the rims indicate that they form at sub-solidus temperatures (550-650 degrees C). Recrystallization rims in Valle d'Arbedo zircon are interpreted as the result of the migration of chemical reaction fronts in which fluid triggered in situ and contemporaneous interface-coupled dissolution-reprecipitation mechanisms. This study indicates that strong lattice strain resulting from the incorporation of a large amount of impurities and structural defects is not a necessary condition for zircon to recrystallize. Our observations suggest that the early formation of recrystallization rims played a major role in preserving zircon from the more recent Alpine metamorphic overprint.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The response of Arabidopsis to stress caused by mechanical wounding was chosen as a model to compare the performances of high resolution quadrupole-time-of-flight (Q-TOF) and single stage Orbitrap (Exactive Plus) mass spectrometers in untargeted metabolomics. Both instruments were coupled to ultra-high pressure liquid chromatography (UHPLC) systems set under identical conditions. The experiment was divided in two steps: the first analyses involved sixteen unwounded plants, half of which were spiked with pure standards that are not present in Arabidopsis. The second analyses compared the metabolomes of mechanically wounded plants to unwounded plants. Data from both systems were extracted using the same feature detection software and submitted to unsupervised and supervised multivariate analysis methods. Both mass spectrometers were compared in terms of number and identity of detected features, capacity to discriminate between samples, repeatability and sensitivity. Although analytical variability was lower for the UHPLC-Q-TOF, generally the results for the two detectors were quite similar, both of them proving to be highly efficient at detecting even subtle differences between plant groups. Overall, sensitivity was found to be comparable, although the Exactive Plus Orbitrap provided slightly lower detection limits for specific compounds. Finally, to evaluate the potential of the two mass spectrometers for the identification of unknown markers, mass and spectral accuracies were calculated on selected identified compounds. While both instruments showed excellent mass accuracy (<2.5ppm for all measured compounds), better spectral accuracy was recorded on the Q-TOF. Taken together, our results demonstrate that comparable performances can be obtained at acquisition frequencies compatible with UHPLC on Q-TOF and Exactive Plus MS, which may thus be equivalently used for plant metabolomics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of mucosally added Escherichia coli heat stable enterotoxin (STa 30 ng ml-1) on the basal short-circuit current (Isc in µA cm-2) across stripped and unstripped sheets of jejuna and ilea taken from fed, starved (4 days, water ad lib) and undernourished (50% control food intake for 21 days) gerbil (Gerbillus cheesmani) were investigated. The effect of neurotoxin tetrodotoxin (TTX 10 µM) and the effects of replacing chloride by gluconate or the effects of removing bicarbonate from bathing buffers on the maximum increase in Isc induced by STa were also investigated. The maximum increase in Isc which resulted from the addition of STa were significantly higher in jejuna and ilea taken from starved and undernourished gerbils when compared with the fed control both using stripped and unstripped sheets. In the two regions of the small intestine taken from fed and starved animals TTX reduced the maximum increase in Isc induced by STa across unstripped sheets only. Moreover in jejuna and ilea taken from undernourished gerbils TTX reduced significantly the maximum increase in Isc induced by STa across stripped and unstripped sheets. Replacing chloride by gluconate decreased the maximum increase in Isc induced by STa across jejuna and ilea taken from undernourished gerbils only. Removing bicarbonates from bathing buffer decreased the maximum increase in Isc across the jejuna and ilea taken from starved and undernourished gerbils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The treatment of some cancer patients has shifted from traditional, non-specific cytotoxic chemotherapy to chronic treatment with molecular targeted therapies. Imatinib mesylate, a selective inhibitor of tyrosine kinases (TKIs) is the most prominent example of this new era and has opened the way to the development of several additional TKIs, including sunitinib, nilotinib, dasatinib, sorafenib and lapatinib, in the treatment of various hematological malignancies and solid tumors. All these agents are characterized by an important inter-individual pharmacokinetic variability, are at risk for drug interactions, and are not devoid of toxicity. Additionally, they are administered for prolonged periods, anticipating the careful monitoring of their plasma exposure via Therapeutic Drug Monitoring (TDM) to be an important component of patients' follow-up. We have developed a liquid chromatography-tandem mass spectrometry method (LC-MS/MS) requiring 100 microL of plasma for the simultaneous determination of the six major TKIs currently in use. Plasma is purified by protein precipitation and the supernatant is diluted in ammonium formate 20 mM (pH 4.0) 1:2. Reverse-phase chromatographic separation of TKIs is obtained using a gradient elution of 20 mM ammonium formate pH 2.2 and acetonitrile containing 1% formic acid, followed by rinsing and re-equilibration to the initial solvent composition up to 20 min. Analyte quantification, using matrix-matched calibration samples, is performed by electro-spray ionization-triple quadrupole mass spectrometry by selected reaction monitoring detection using the positive mode. The method was validated according to FDA recommendations, including assessment of extraction yield, matrix effects variability (<9.6%), overall process efficiency (87.1-104.2%), as well as TKIs short- and long-term stability in plasma. The method is precise (inter-day CV%: 1.3-9.4%), accurate (-9.2 to +9.9%) and sensitive (lower limits of quantification comprised between 1 and 10 ng/mL). This is the first broad-range LC-MS/MS assay covering the major currently in-use TKIs. It is an improvement over previous methods in terms of convenience (a single extraction procedure for six major TKIs, reducing significantly the analytical time), sensitivity, selectivity and throughput. It may contribute to filling the current knowledge gaps in the pharmacokinetics/pharmacodynamics relationships of the latest TKIs developed after imatinib and better define their therapeutic ranges in different patient populations in order to evaluate whether a systematic TDM-guided dose adjustment of these anticancer drugs could contribute to minimize the risk of major adverse reactions and to increase the probability of efficient, long lasting, therapeutic response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increasing number of bomb attacks involving improvised explosive devices, as well as the nature of the explosives, give rise to concern among safety and law enforcement agencies. The substances used in explosive charges are often everyday products diverted from their primary licit applications. Thus, reducing or limiting their accessibility for prevention purposes is difficult. Ammonium nitrate, employed in agriculture as a fertiliser, is used worldwide in small and large homemade bombs. Black powder, dedicated to hunting and shooting sports, is used illegally as a filling in pipe bombs causing extensive damage. If the main developments of instrumental techniques in explosive analysis have been constantly pushing the limits of detection, their actual contribution to the investigation of explosives in terms of source discrimination is limited. Forensic science has seen the emergence of a new technology, isotope ratio mass spectrometry (IRMS), that shows promising results. Its very first application in forensic science dates back to 1979. Liu et al. analysed cannabis plants coming from different countries [Liu et al. 1979]. This preliminary study highlighted its potential to discriminate specimens coming from different sources. Thirty years later, the keen interest in this new technology has given rise to a flourishing number of publications in forensic science. The countless applications of IRMS to a wide range of materials and substances attest to its success and suggest that the technique is ready to be used in forensic science. However, many studies are characterised by a lack of methodology and fundamental data. They have been undertaken in a top-down approach, applying this technique in an exploratory manner on a restricted sampling. This manner of procedure often does not allow the researcher to answer a number of questions, such as: do the specimens come from the same source, what do we mean by source or what is the inherent variability of a substance? The production of positive results has prevailed at the expense of forensic fundamentals. This research focused on the evaluation of the contribution of the information provided by isotopic analysis to the investigation of explosives. More specifically, this evaluation was based on a sampling of black powders and ammonium nitrate fertilisers coming from known sources. Not only has the methodology developed in this work enabled us to highlight crucial elements inherent to the methods themselves, but also to evaluate both the longitudinal and transversal variabilities of the information. First, the study of the variability of the profile over time was undertaken. Secondly, the variability of black powders and ammonium nitrate fertilisers within the same source and between different sources was evaluated. The contribution of this information to the investigation of explosives was then evaluated and discussed. --------------------------------------------------------------------------------------------------- Le nombre croissant d'attentats à la bombe impliquant des engins explosifs artisanaux, ainsi que la nature des charges explosives, constituent une préoccupation majeure pour les autorités d'application de la loi et les organismes de sécurité. Les substances utilisées dans les charges explosives sont souvent des produits du quotidien, détournés de leurs applications licites. Par conséquent, réduire ou limiter l'accessibilité de ces produits dans un but de prévention est difficile. Le nitrate d'ammonium, employé dans l'agriculture comme engrais, est utilisé dans des petits et grands engins explosifs artisanaux. La poudre noire, initialement dédiée à la chasse et au tir sportif, est fréquemment utilisée comme charge explosive dans les pipe bombs, qui causent des dommages importants. Si les développements des techniques d'analyse des explosifs n'ont cessé de repousser les limites de détection, leur contribution réelle à l'investigation des explosifs est limitée en termes de discrimination de sources. Une nouvelle technologie qui donne des résultats prometteurs a fait son apparition en science forensique: la spectrométrie de masse à rapport isotopique (IRMS). Sa première application en science forensique remonte à 1979. Liu et al. ont analysé des plants de cannabis provenant de différents pays [Liu et al. 1979]. Cette étude préliminaire, basée sur quelques analyses, a mis en évidence le potentiel de l'IRMS à discriminer des spécimens provenant de sources différentes. Trente ans plus tard, l'intérêt marqué pour cette nouvelle technologie en science forensique se traduit par un nombre florissant de publications. Les innombrables applications de l'IRMS à une large gamme de matériaux et de substances attestent de son succès et suggèrent que la technique est prête à être utilisée en science forensique. Cependant, de nombreuses études sont caractérisées par un manque de méthodologie et de données fondamentales. Elles ont été menées sans définir les hypothèses de recherche et en appliquant cette technique de façon exploratoire sur un échantillonnage restreint. Cette manière de procéder ne permet souvent pas au chercheur de répondre à un certain nombre de questions, tels que: est-ce que deux spécimens proviennent de la même source, qu'entend-on par source ou encore quelle est l'intravariabilité d'une substance? La production de résultats positifs a prévalu au détriment des fondamentaux de science forensique. Cette recherche s'est attachée à évaluer la contribution réelle de l'information isotopique dans les investigations en matière d'explosifs. Plus particulièrement, cette évaluation s'est basée sur un échantillonnage constitué de poudres noires et d'engrais à base de nitrate d'ammonium provenant de sources connues. La méthodologie développée dans ce travail a permis non seulement de mettre en évidence des éléments cruciaux relatifs à la méthode d'analyse elle-même, mais également d'évaluer la variabilité de l'information isotopique d'un point de vue longitudinal et transversal. Dans un premier temps, l'évolution du profil en fonction du temps a été étudiée. Dans un second temps, la variabilité du profil des poudres noires et des engrais à base de nitrate d'ammonium au sein d'une même source et entre différentes sources a été évaluée. La contribution de cette information dans le cadre des investigations d'explosifs a ensuite été discutée et évaluée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser desorption ionisation mass spectrometry (LDI-MS) has demonstrated to be an excellent analytical method for the forensic analysis of inks on a questioned document. The ink can be analysed directly on its substrate (paper) and hence offers a fast method of analysis as sample preparation is kept to a minimum and more importantly, damage to the document is minimised. LDI-MS has also previously been reported to provide a high power of discrimination in the statistical comparison of ink samples and has the potential to be introduced as part of routine ink analysis. This paper looks into the methodology further and evaluates statistically the reproducibility and the influence of paper on black gel pen ink LDI-MS spectra; by comparing spectra of three different black gel pen inks on three different paper substrates. Although generally minimal, the influences of sample homogeneity and paper type were found to be sample dependent. This should be taken into account to avoid the risk of false differentiation of black gel pen ink samples. Other statistical approaches such as principal component analysis (PCA) proved to be a good alternative to correlation coefficients for the comparison of whole mass spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 µM), or by inhibiting the H+-pump with bafilomycin (4 µM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 µM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A sensitive and specific ultra performance liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of nicotine, its metabolites cotinine and trans-3'-hydroxycotinine and varenicline in human plasma was developed and validated. Sample preparation was realized by solid phase extraction of the target compounds and of the internal standards (nicotine-d4, cotinine-d3, trans-3'-hydroxycotinine-d3 and CP-533,633, a structural analog of varenicline) from 0.5mL of plasma, using a mixed-mode cation exchange support. Chromatographic separations were performed on a hydrophilic interaction liquid chromatography column (HILIC BEH 2.1×100mm, 1.7μm). A gradient program was used, with a 10mM ammonium formate buffer pH 3/acetonitrile mobile phase at a flow of 0.4mL/min. The compounds were detected on a triple quadrupole mass spectrometer, operated with an electrospray interface in positive ionization mode and quantification was performed using multiple reaction monitoring. Matrix effects were quantitatively evaluated with success, with coefficients of variation inferior to 8%. The procedure was fully validated according to Food and Drug Administration guidelines and to Société Française des Sciences et Techniques Pharmaceutiques. The concentration range was 2-500ng/mL for nicotine, 1-1000ng/mL for cotinine, 2-1000ng/mL for trans-3'-hydroxycotinine and 1-500ng/mL for varenicline, according to levels usually measured in plasma. Trueness (86.2-113.6%), repeatability (1.9-12.3%) and intermediate precision (4.4-15.9%) were found to be satisfactory, as well as stability in plasma. The procedure was successfully used to quantify nicotine, its metabolites and varenicline in more than 400 plasma samples from participants in a clinical study on smoking cessation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capillary zone electrophoresis (CZE) with UV detection has been widely used for the determination of carbohydrate-deficient transferrin (CDT), an indirect marker of the chronic alcohol consumption (≥60-80g/day). A commercially available method (CEofix? CDT kit), containing a bilayer anionic coating, allows for the analysis of CDT with a high resolution between transferrin (Tf) glycoforms with reduced protein adsorption onto the capillary wall. Although widely used in routine analysis, this procedure presents some limitations in terms of selectivity and sensitivity which may be overcome with mass spectrometry (MS). However, the available method is not MS-compatible due to the non-volatile coating as well as the phosphate and borate buffers present in the background electrolyte (BGE). This study firstly consisted in developing MS-compatible separation conditions, i.e., coating and BGE compositions. Numerous cationic, neutral, and anionic coatings were evaluated in combination with BGEs covering a broad range of pH values. A bilayer coating composed of a cationic layer of 10% polybrene (m/v) and an anionic layer of 10% dextran sulfate (m/v) combined with a BGE composed of 20mM ammonium acetate at pH 8.5 provided the best results in terms of glycoforms' resolution, efficiency, adsorption reduction, migration times' repeatability, and coating stability. The method was then transferred to CZE-MS after investigations of the electrospray ionization (ESI) source, equipped with a sheath-flow interface, and the time-of-flight (TOF/MS) parameters. A successful MS detection of tetrasialo-Tf was obtained during infusion, while the experiments highlighted the challenges and issues encountered with intact glycoprotein analysis by CZE-ESI-MS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consumption of nicotine in the form of smokeless tobacco (snus, snuff, chewing tobacco) or nicotine-containing medication (gum, patch) may benefit sport practice. Indeed, use of snus seems to be a growing trend and investigating nicotine consumption amongst professional athletes is of major interest to sport authorities. Thus, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of nicotine and its principal metabolites cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide in urine was developed. Sample preparation was performed by liquid-liquid extraction followed by hydrophilic interaction chromatography-tandem mass spectrometry (HILIC-MS/MS) operated in electrospray positive ionization (ESI) mode with selective reaction monitoring (SRM) data acquisition. The method was validated and calibration curves were linear over the selected concentration ranges of 10-10,000 ng/mL for nicotine, cotinine, trans-3-hydroxycotinine and 10-5000 ng/mL for nicotine-N'-oxide and cotinine-N-oxide, with calculated coefficients of determination (R(2)) greater than 0.95. The total extraction efficiency (%) was concentration dependent and ranged between 70.4 and 100.4%. The lower limit of quantification (LLOQ) for all analytes was 10 ng/mL. Repeatability and intermediate precision were ?9.4 and ?9.9%, respectively. In order to measure the prevalence of nicotine exposure during the 2009 Ice Hockey World Championships, 72 samples were collected and analyzed after the minimum of 3 months storage period and complete removal of identification means as required by the 2009 International Standards for Laboratories (ISL). Nicotine and/or metabolites were detected in every urine sample, while concentration measurements indicated an exposure within the last 3 days for eight specimens out of ten. Concentrations of nicotine, cotinine, trans-3-hydroxycotinine, nicotine-N'-oxide and cotinine-N-oxide were found to range between 11 and 19,750, 13 and 10,475, 10 and 8217, 11 and 3396, and 13 and 1640 ng/mL, respectively. When proposing conservative concentration limits for nicotine consumption prior and/or during the games (50 ng/mL for nicotine, cotinine and trans-3-hydroxycotinine and 25 ng/mL for nicotine-N'-oxide and cotinine-N-oxide), about half of the hockey players were qualified as consumers. These findings significantly support the likelihood of extensive smokeless nicotine consumption. However, since such conclusions can only be hypothesized, the potential use of smokeless tobacco as a doping agent in ice hockey requires further investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gas chromatographic-mass spectrometric method is presented which allows the determination of chlorzoxazone and 6-hydroxychlorzoxazone after derivatization with the reagent N-tert.-butyldimethylsilyl-N-methyltrifluoroacetamide. No interference was observed from endogenous compounds following the extraction of plasma samples from six different human subjects. The standard curves were linear over a working range of 20 to 4000 ng/ml and of 20 to 1000 ng/ml for chlorzoxazone and 6-hydroxychlorzoxazone, respectively. Recoveries ranged from 65 to 97% for the two compounds and intra- and inter-day coefficients of variation were always less than 9%. The limit of quantitation of the method was found to be 5 ng/ml for the two compounds, hence allowing its use for single low dose pharmacokinetics.