982 resultados para interaction design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em meio à rápida propagação de tecnologias de mídia que tornam possível produzir, arquivar, se apropriar e recircular conteúdo informacional, uma cultura participativa vem emergindo nos dias atuais. Uma lógica de colaboração se faz presente, viabilizada por ferramentas técnicas que estruturam o conhecimento em rede. Nesse contexto, o museu, enquanto agência de representação sociocultural, se esforça no sentido de atualizar-se. Nesta dissertação, sugere-se que a interação participativa de caráter social é um caminho para renovar e ampliar as narrativas culturais elaboradas pelos museus, em sua relação comunicacional com o público. Foi elaborado, então, o sistema Revelar: um modelo preliminar que se propõe a investigar o design de participação em contexto museológico. O sistema, que tem como palco de ações o complexo do Jardim Botânico do Rio de Janeiro, pressupõe a participação de estudantes de Ensino Médio em uma atividade programada pela equipe do Museu do Meio Ambiente. A matéria de contribuição dos alunos participantes é a fotografia produzida a partir do uso de dispositivos móveis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper shows how computational techniques have been used to develop axi-symmetric, straight, sonic-line, minimum length micro nozzles that are suitable for laser micro-machining applications. Gas jets are used during laser micro-machining processing applications to shield the interaction zone between laser and workpiece material, and they determine the machining efficiency of such applications. The paper discusses the nature of laser-material interactions and the importance of using computational fluid dynamics to model pressure distributions in short nozzles that are used to deliver gas to the laser-material interaction zone. Experimental results are presented that highlight unique problems associated with laser micro machining using gas jets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esta dissertação aborda os princípios do Design, os fundamentos do Marketing e as condições que ambas as atividades podem, em parceria, gerar ambientes criativos para a Sustentabilidade. Acredita-se que tanto Design quanto Marketing são campos de saber parceiros, complementares e transversais, tendo deste modo um natural potencial de sinergia para a construção de projetos consistentes e duráveis. A insistência nesta ideia se deve, em parte, à vivência profissional nesses setores de gestão de projeto, e também ao desenvolvimento de exames, através da pesquisa bibliográfica, sobre os sentidos de termos, conceitos e objetivos para a organização de dados, a análise e alinhamento conceitual e a verificação de tangências entre esses campos. Este trabalho objetiva contribuir para a interação e a integração de saberes, em cursos de nível superior, também com a sugestão de ferramenta criativo-analítica e criativo-gerativa para o desenvolvimento de soluções mais sustentáveis. A crescente necessidade de atuações adequadas e eficazes dos campos estudados nos setores produtivos, a necessidade de profissionais capazes de se adequarem estas demandas, e a oferta deficitária de pesquisas com esta abordagem reforçam a crença na utilidade desta investigação. Os saberes em foco têm em comum relações multidisciplinares, sistêmicas e interdependentes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Em projetos de inovação por design, a concepção detalhada e sistêmica do projeto amplia a probabilidade de êxito de modo a preservar e aumentar o retorno dos recursos investidos. Privilegia-se o desenvolvimento em etapas para ampliar a consciência do ecossistema e valores associados ao projeto. Deste modo, o processo é conduzido de modo mais adequado partindo do contexto e objetivos à sua especificação conceitual para execução. Um levantamento dos parâmetros, processos, atividades, formas de conexão e interação, ambiente, elementos do projeto e contexto semântico estruturam um percurso metodológico em módulos e ferramentas que refinam gradualmente a partir do objetivo inicialmente exposto ao projeto de inovação bem-sucedido.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residential RC framed structures suffered heavily during the 2001 Bhuj earthquake in Gujarat, India. These types of structures also saw severe damage in other earthquakes such as the 1999 Kocaeli earthquake in Turkey and 921 Ji-Ji earthquake in Taiwan. In this paper the seismic response of residential structures was investigated using physical modelling. Idealised soft storey and top heavy, two degrees of freedom (2DOF) portal frame structures were developed and tested on saturated and dry sand models at 25 g using the Schofield Centre 10-m Beam Centrifuge. It was possible to recreate observed field behaviour using these models. As observed in many of the recent earthquakes, soft storey structures were found to be particularly vulnerable to seismic loads. Elastic response spectra methods are often used in the design of simple portal frame structures. The seismic risk of these structures can be significantly increased due to modifications such as removal of a column or addition of heavy water tanks on the roof. The experimental data from the dynamic centrifuge tests on such soft storey or top-heavy models was used to evaluate the predictions obtained from the response spectra. Response spectra were able to predict seismic response during small to moderate intensity earthquakes, but became inaccurate during strong earthquakes and when soil structure interaction effects became important. Re-evaluation of seismic risk of such modified structures is required and time domain analyses suggested by building codes such as IBC, UBC or NEHRP may be more appropriate. © Springer 2006.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional bumps have been developed and investigated, aiming at the two major objectives of shock-wave / boundary-layer interaction control, i.e. drag reduction and suppression of separation, simultaneously. An experimental investigation has been conducted for a default rounded bump in channel now at University of Cambridge and a computational study has been performed for a spanwise series of rounded bumps mounted on a transonic aerofoil at University of Stuttgart. Observed in both cases are wave drag reduction owing to A-shock structures produced by three-dimensional surface bumps and mild control effects on the boundary layer. The effects of rough surface and tall extension have been investigated as well as several geometric variations and multiple bump configurations. A double configuration of narrow rounded bumps has been found to best perform amongst the tested, considerably reducing wave drag through a well-established A-shock structure with little viscous penalty and thus achieving substantial overall drag reduction. Counter-rotating streamwise vortex pairs have been produced by some configurations as a result of local flow separation, but they have been observed to be confined in relatively narrow wake regions, expected to be beneficial in suppressing large-scale separation under off-design condition despite increase of viscous drag. On the whole a large potential of three-dimensional control with discrete rounded bumps has been demonstrated both experimentally and numerically, and experimental investigation of bumps fitted on a transonic aerofoil or wing is suggested toward practical application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effects of wake/leading-edge interactions were studied at off-design conditions. Measurements were performed on the stator-blade suction surface at midspan. The leading-edge flow-field was investigated using hotwire micro-traverses, hotfilm surface shear-stress sensors and pressure micro-tappings. The trailing-edge flow-field was investigated using hotwire boundary-layer traverses. Unsteady CFD calculations were also performed to aid the interpretation of the results. At low flow coefficients, the time-averaged momentum thickness of the leading-edge boundary layer was found to rise as the flow coefficient was reduced. The time-resolved momentum-thickness rose due to the interaction of the incoming rotor wake. As the flow coefficient was reduced, the incoming wakes increased in pitch-wise extent, velocity deficit and turbulence intensity. This increased both the time-resolved rise in the momentum thickness and the turbulent spot production within the wake affected boundary-layer. Close to stall, a drop in the leading-edge momentum thickness was observed in-between wake events. This was associated with the formation of a leading-edge separation bubble in-between wake events. The wake interaction with the bubble gave rise to a shedding phenomenon, which produced large length scale disturbances in the surface shear stress. Copyright © 2008 by ASME.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inflatable aerodynamic decelerators have potential advantages for planetary re-entry in robotic and human exploration missions. In this paper, we focus on an inflatable tension cone design that has potential advantages over other geometries. A computational fluid-structure interaction model of a tension cone is employed to investigate the behavior of the inflatable aeroshell at supersonic speeds for conditions matching recent experimental results. A parametric study is carried out to investigate the deflections of the tension cone as a function of inflation pressure of the torus at a Mach of 2.5. Comparison of the behavior of the structure, amplitude of deformations, and determined loads are reported. © 2010 by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Turbomachinery flows are inherently unsteady. Until now during the design process, unsteadiness has been neglected, with resort merely to steady numerical simulations. Despite the assumption involved, the results obtained with steady simulations have been used with success. One of the questions arising in recent years is can unsteady simulations be used to improve the design of turbomachines? In this work the numerical simulation of a multi-stage axial compressor is carried out. Comparison of Reynolds averaged Navier-Stokes (RANS) and unsteady Reynolds averaged Navier-Stokes (URANS) calculation shows that the unsteadiness affects pressure losses and the prediction of stall limit. The unsteady inflow due to the wake passing mainly modifies the losses and whirl angle near the endwalls. The computational cost of the fully unsteady compared with a steady simulation is about four times in terms of mesh dimension and two orders of magnitude as number of iterations. A mixed RANS-URANS solution has been proposed to give the designer the possibility to simulate an unsteady stage embedded in a steady-state simulation. This method has been applied to the simulation of a four-stage axial compressor rig. The mixed RANS-URANS approach has been developed using sliding and mixing planes as interface conditions. The rotor-stator interaction has been captured physically while reducing the computational time and mesh size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As humanoid robots become more commonplace in our society, it is important to understand the relation between humans and humanoid robots. In human face-to-face interaction, the observation of another individual performing an action facilitates the execution of a similar action, and interferes with the execution of different action. This phenomenon has been explained by the existence of shared internal representations for the execution and perception of actions, which would be automatically activated by the perception of another individual's action. In one interference experiment, null interference was reported when subjects observed a robotic arm perform the incongruent task, suggesting that this effect may be specific to interacting with other humans. This experimental paradigm, designed to investigate motor interference in human interactions, was adapted to investigate how similar the implicit perception of a humanoid robot is to a human agent. Subjects performed rhythmic arm movements while observing either a human agent or humanoid robot performing either congruent or incongruent movements. The variance of the executed movements was used as a measure of the amount of interference in the movements. Both the human and humanoid agents produced significant interference effect. These results suggest that observing the action of humanoid robot and human agent may rely on similar perceptual processes. Furthermore, the ratio of the variance in incongruent to congruent conditions varied between the human agent and humanoid robot. We speculate this ratio describes how the implicit perception of a robot is similar to that of a human, so that this paradigm could provide an objective measure of the reaction to different types of robots and be used to guide the design of humanoid robots interacting with humans. © 2004 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sir John Egan’s 1998 report on the construction industry (Construction Task Force 1998) noted its confrontational and adversarial nature. Both the original report and its subsequent endorsement in Accelerating Change (Strategic Forum 2002) called for improved working relationships—so-called ‘integration’—within and between both design and construction aspects. In this paper, we report on our observations of on-site team meetings for a major UK project during its construction phase. We attended a series of team meetings and recorded the patterns of verbal interaction that took place within them. In reporting our findings, we have deliberately used a graphical method for presenting the results, in the expectation that this will make them more readily accessible to designers. Our diagrams of these interaction patterns have already proved to be intuitively and quickly understood, and have generated interest and discussion among both those we observed and others who have seen them. We noted that different patterns of communication occurred in different types of meetings. Specifically, in the problem-solving meeting, there was a richness of interaction that was largely missing from progress meetings and technical meetings. Team members expressed greater satisfaction with this problem-solving meeting where these enriched exchanges took place. By making comparisons between the different patterns, we are also able to explore functional roles and their interactions. From this and other published evidence, we conclude that good teamworking practices depend on a complex interplay of relations and dependencies embedded within the team.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Carbon nanotube (CNT) fiber directly spun from an aerogel has a unique, well-aligned nanostructure (nano-pore and nano-brush), and thus provides high electro-catalytic activity and strong interaction with glucose oxidase enzyme. It shows great potential as a microelectrode for electrochemical biosensors. RESULTS: Cyclic voltammogram results indicate that post-synthesis treatments have great influence on the electrocatalytic activity of CNT fibers. Raman spectroscopy and electrical conductivity tests suggest that fibers annealed at 250 °C remove most of the impurities without damaging the graphite-like structure. This leads to a nano-porous morphology on the surface and the highest conductivity value (1.1 × 10 5 S m -1). Two CNT fiber microelectrode designs were applied to enhance their electron transfer behaviour, and it was found that a design using a 30 nm gold coating is able to linearly cover human physiological glucose level between 2 and 30 mmol L -1. The design also leads to a low detection limit of 25 μmol L -1. CONCLUSIONS: The high performance of CNT fibers not only offers exceptional mechanical and electrical properties, but also provides a large surface area and electron transfer pathway. They consequently make excellent bioactive microelectrodes for glucose biosensing, especially for potential use in implantable devices. © 2011 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of a transonic fan operating within nonuniform inlet flow remains a key concern for the design and operability of a turbofan engine. This paper applies computational methods to improve the understanding of the interaction between a transonic fan and an inlet total pressure distortion. The test case studied is the NASA rotor 67 stage operating with a total pressure distortion covering a 120-deg sector of the inlet flow field. Full-annulus, unsteady, three-dimensional CFD has been used to simulate the test rig installation and the full fan assembly operating with inlet distortion. Novel post-processing methods have been applied to extract the fan performance and features of the interaction between the fan and the nonuniform inflow. The results of the unsteady computations agree well with the measurement data. The local operating condition of the fan at different positions around the annulus has been tracked and analyzed, and this is shown to be highly dependent on the swirl and mass flow redistribution that the rotor induces ahead of it due to the incoming distortion. The upstream flow effects lead to a variation in work input that determines the distortion pattern seen downstream of the fan stage. In addition, the unsteady computations also reveal more complex flow features downstream of the fan stage, which arise due to the three dimensionality of the flow and unsteadiness. © 2012 American Society of Mechanical Engineers.