882 resultados para intelligence-led
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light- emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.
Resumo:
Petroleum well drilling monitoring has become an important tool for detecting and preventing problems during the well drilling process. In this paper, we propose to assist the drilling process by analyzing the cutting images at the vibrating shake shaker, in which different concentrations of cuttings can indicate possible problems, such as the collapse of the well borehole walls. In such a way, we present here an innovative computer vision system composed by a real time cutting volume estimator addressed by support vector regression. As far we know, we are the first to propose the petroleum well drilling monitoring by cutting image analysis. We also applied a collection of supervised classifiers for cutting volume classification. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Droplets formed at the tip of a tube under the same conditions possess extreme uniformity of form, volume and weight. These properties of liquid drop formation have been known for a long time and consequently many applications for the drop have been found in instrumentation and chemical analysis methods. In the present paper, we report on the analytical use of a dynamic LED-based flow-through optical absorption detector with optical path length controlled by continuous dropping of a solution. This arrangement consists of a flow cell built within a high-intensity red LED (lambda (max)=630 nm). The feasibility of the detector is demonstrated by colorimetric determination of methylene blue, and ammonium by Berthelot's reaction, in a flow-injection system. For ammonium, the reaction forms a blue dye (indophenol) with a maximum absorption at 630-650 nm. The detection limit, considered as 3 times the signal of the blank, is better than 125 mu g l(-1). The small flow cell represents a good combination of optical path length, low volume and fast washout. This detector can be used advantageously in automated methods and can represent a solution to problems of optical detection involving gas bubbles and precipitation of particles in turbidimetric applications.
Resumo:
This work describes the new improvements of the SISTEMAT project, one system for structural elucidation mainly in the field of Natural Products Chemistry. Some examples of the resolution of problems using C-13 Nuclear Magnetic Resonance and Mass Spectroscopy are given. Programs to discover new heuristic rules for structure generation are discussed. The data base contains about 10000 C-13 NMR spectra.
Resumo:
The advantages offered by the electronic component LED (Light Emitting Diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data.
Resumo:
This paper shows a comparative study between the Artificial Intelligence Problem Solving and the Human Problem Solving. The study is based on the solution by many ways of problems proposed via multiple-choice questions. General techniques used by humans to solve this kind of problems are grouped in blocks and each block is divided in steps. A new architecture for ITS - Intelligent Tutoring System is proposed to support experts' knowledge representation and novices' activities. Problems are represented by a text and feasible answers with particular meaning and form, to be rigorously analyzed by the solver to find the right one. Paths through a conceptual space of states represent each right solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we introduce a DAI approach called hereinafter Fuzzy Distributed Artificial Intelligence (FDAI). Through the use of fuzzy logic, we have been able to develop mechanisms that we feel may effectively improve current DAI systems, giving much more flexibility and providing the subsidies which a formal theory can bring. The appropriateness of the FDAI approach is explored in an important application, a fuzzy distributed traffic-light control system, where we have been able to aggregate and study several issues concerned with fuzzy and distributed artificial intelligence. We also present a number of current research directions necessary to develop the FDAI approach more fully.
Resumo:
This paper introduces a method for the supervision and control of devices in electric substations using fuzzy logic and artificial neural networks. An automatic knowledge acquisition process is included which allows the on-line processing of operator actions and the extraction of control rules to replace gradually the human operator. Some experimental results obtained by the application of the implemented software in a simulated environment with random signal generators are presented.
Resumo:
Objective: To compare the performance of patients with complex partial epilepsy with the normal controls in the subtests of an instrument used to assess intelligence function. Method: Fifty epileptic patients, whose ages ranged from 19 to 49 years and 20 normal controls without any neuropsychiatric disorders. The Wechsler-Bellevue adult intelligence test was applied in groups, epileptic patients and control subjects. This test is composed of several subtests that assess specific cognitive functions. A statistical analysis was performed using non-parametric tests. Results: All the Wechsler-Bellevue subtests revealed that the intelligence functions of the patients were significantly inferior to that of the controls (p<0.05). This performance was supported by the patient's complaints in relation to their cognitive performance. Conclusion: Patients with complex partial epilepsy presented poorer results in the intelligence test when compared with individuals without neuropsychiatric disorders.
Resumo:
The purpose of our investigation is to compare the intrapulpal temperature changes following blue LED system and halogen lamp irradiation at the enamel surface of permanent teeth. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Several light sources can be used: halogens, arc plasma, lasers, and recently blue LED systems. An important aspect to be observed during such a procedures is the temperature change. In this study, we have used nine human extracted permanent teeth: three central incisors, three lateral incisors, and three canines. Teeth were exposed to two light sources: blue LED system (preliminary commercial model LEC 470-II) and halogen lamp (conventional photo-cure equipment). The surface of teeth was exposed for 20, 40, and 60 sec at the buccal and lingual enamel surface with an angle of 45 degrees. Temperature values measured by a thermistor placed at pulpar chamber were read in time intervals of 1 sec. We obtained plots showing the temperature evolution as a function of time for each experiment. There is a correlation between heating quantity and exposition time of light source: with increasing exposition time, heating increases into the pulpal chamber. The halogen lamp showed higher heating than the LED system, which showed a shorter time of cooling than halogen lamp. The blue LED system seems like the indicated light source for photo-cure of composite resin during the bonding of brackets. The fixation of brackets using composite resin is more comfortable and faster when using a photo-curable composite. Blue LED equipment did not heat during its use. This could permit a shorter clinical time of operation and better performance. © Mary Ann Liebert, Inc.