852 resultados para information networks
Resumo:
When visual sensor networks are composed of cameras which can adjust the zoom factor of their own lens, one must determine the optimal zoom levels for the cameras, for a given task. This gives rise to an important trade-off between the overlap of the different cameras’ fields of view, providing redundancy, and image quality. In an object tracking task, having multiple cameras observe the same area allows for quicker recovery, when a camera fails. In contrast having narrow zooms allow for a higher pixel count on regions of interest, leading to increased tracking confidence. In this paper we propose an approach for the self-organisation of redundancy in a distributed visual sensor network, based on decentralised multi-objective online learning using only local information to approximate the global state. We explore the impact of different zoom levels on these trade-offs, when tasking omnidirectional cameras, having perfect 360-degree view, with keeping track of a varying number of moving objects. We further show how employing decentralised reinforcement learning enables zoom configurations to be achieved dynamically at runtime according to an operator’s preference for maximising either the proportion of objects tracked, confidence associated with tracking, or redundancy in expectation of camera failure. We show that explicitly taking account of the level of overlap, even based only on local knowledge, improves resilience when cameras fail. Our results illustrate the trade-off between maintaining high confidence and object coverage, and maintaining redundancy, in anticipation of future failure. Our approach provides a fully tunable decentralised method for the self-organisation of redundancy in a changing environment, according to an operator’s preferences.
Resumo:
With the advent of GPS enabled smartphones, an increasing number of users is actively sharing their location through a variety of applications and services. Along with the continuing growth of Location-Based Social Networks (LBSNs), security experts have increasingly warned the public of the dangers of exposing sensitive information such as personal location data. Most importantly, in addition to the geographical coordinates of the user’s location, LBSNs allow easy access to an additional set of characteristics of that location, such as the venue type or popularity. In this paper, we investigate the role of location semantics in the identification of LBSN users. We simulate a scenario in which the attacker’s goal is to reveal the identity of a set of LBSN users by observing their check-in activity. We then propose to answer the following question: what are the types of venues that a malicious user has to monitor to maximize the probability of success? Conversely, when should a user decide whether to make his/her check-in to a location public or not? We perform our study on more than 1 million check-ins distributed over 17 urban regions of the United States. Our analysis shows that different types of venues display different discriminative power in terms of user identity, with most of the venues in the “Residence” category providing the highest re-identification success across the urban regions. Interestingly, we also find that users with a high entropy of their check-ins distribution are not necessarily the hardest to identify, suggesting that it is the collective behaviour of the users’ population that determines the complexity of the identification task, rather than the individual behaviour.
Resumo:
In recent years, the rapid spread of smartphones has led to the increasing popularity of Location-Based Social Networks (LBSNs). Although a number of research studies and articles in the press have shown the dangers of exposing personal location data, the inherent nature of LBSNs encourages users to publish information about their current location (i.e., their check-ins). The same is true for the majority of the most popular social networking websites, which offer the possibility of associating the current location of users to their posts and photos. Moreover, some LBSNs, such as Foursquare, let users tag their friends in their check-ins, thus potentially releasing location information of individuals that have no control over the published data. This raises additional privacy concerns for the management of location information in LBSNs. In this paper we propose and evaluate a series of techniques for the identification of users from their check-in data. More specifically, we first present two strategies according to which users are characterized by the spatio-temporal trajectory emerging from their check-ins over time and the frequency of visit to specific locations, respectively. In addition to these approaches, we also propose a hybrid strategy that is able to exploit both types of information. It is worth noting that these techniques can be applied to a more general class of problems where locations and social links of individuals are available in a given dataset. We evaluate our techniques by means of three real-world LBSNs datasets, demonstrating that a very limited amount of data points is sufficient to identify a user with a high degree of accuracy. For instance, we show that in some datasets we are able to classify more than 80% of the users correctly.
Resumo:
Доклад, поместен в сборника на Националната конференция "Образованието в информационното общество", Пловдив, май, 2012 г.
Resumo:
We develop a simplified implementation of the Hoshen-Kopelman cluster counting algorithm adapted for honeycomb networks. In our implementation of the algorithm we assume that all nodes in the network are occupied and links between nodes can be intact or broken. The algorithm counts how many clusters there are in the network and determines which nodes belong to each cluster. The network information is stored into two sets of data. The first one is related to the connectivity of the nodes and the second one to the state of links. The algorithm finds all clusters in only one scan across the network and thereafter cluster relabeling operates on a vector whose size is much smaller than the size of the network. Counting the number of clusters of each size, the algorithm determines the cluster size probability distribution from which the mean cluster size parameter can be estimated. Although our implementation of the Hoshen-Kopelman algorithm works only for networks with a honeycomb (hexagonal) structure, it can be easily changed to be applied for networks with arbitrary connectivity between the nodes (triangular, square, etc.). The proposed adaptation of the Hoshen-Kopelman cluster counting algorithm is applied to studying the thermal degradation of a graphene-like honeycomb membrane by means of Molecular Dynamics simulation with a Langevin thermostat. ACM Computing Classification System (1998): F.2.2, I.5.3.
Resumo:
In many e-commerce Web sites, product recommendation is essential to improve user experience and boost sales. Most existing product recommender systems rely on historical transaction records or Web-site-browsing history of consumers in order to accurately predict online users’ preferences for product recommendation. As such, they are constrained by limited information available on specific e-commerce Web sites. With the prolific use of social media platforms, it now becomes possible to extract product demographics from online product reviews and social networks built from microblogs. Moreover, users’ public profiles available on social media often reveal their demographic attributes such as age, gender, and education. In this paper, we propose to leverage the demographic information of both products and users extracted from social media for product recommendation. In specific, we frame recommendation as a learning to rank problem which takes as input the features derived from both product and user demographics. An ensemble method based on the gradient-boosting regression trees is extended to make it suitable for our recommendation task. We have conducted extensive experiments to obtain both quantitative and qualitative evaluation results. Moreover, we have also conducted a user study to gauge the performance of our proposed recommender system in a real-world deployment. All the results show that our system is more effective in generating recommendation results better matching users’ preferences than the competitive baselines.
Resumo:
Computational and communication complexities call for distributed, robust, and adaptive control. This paper proposes a promising way of bottom-up design of distributed control in which simple controllers are responsible for individual nodes. The overall behavior of the network can be achieved by interconnecting such controlled loops in cascade control for example and by enabling the individual nodes to share information about data with their neighbors without aiming at unattainable global solution. The problem is addressed by employing a fully probabilistic design, which can cope with inherent uncertainties, that can be implemented adaptively and which provide a systematic rich way to information sharing. This paper elaborates the overall solution, applies it to linear-Gaussian case, and provides simulation results.
Resumo:
In recent years, the boundaries between e-commerce and social networking have become increasingly blurred. Many e-commerce websites support the mechanism of social login where users can sign on the websites using their social network identities such as their Facebook or Twitter accounts. Users can also post their newly purchased products on microblogs with links to the e-commerce product web pages. In this paper, we propose a novel solution for cross-site cold-start product recommendation, which aims to recommend products from e-commerce websites to users at social networking sites in 'cold-start' situations, a problem which has rarely been explored before. A major challenge is how to leverage knowledge extracted from social networking sites for cross-site cold-start product recommendation. We propose to use the linked users across social networking sites and e-commerce websites (users who have social networking accounts and have made purchases on e-commerce websites) as a bridge to map users' social networking features to another feature representation for product recommendation. In specific, we propose learning both users' and products' feature representations (called user embeddings and product embeddings, respectively) from data collected from e-commerce websites using recurrent neural networks and then apply a modified gradient boosting trees method to transform users' social networking features into user embeddings. We then develop a feature-based matrix factorization approach which can leverage the learnt user embeddings for cold-start product recommendation. Experimental results on a large dataset constructed from the largest Chinese microblogging service Sina Weibo and the largest Chinese B2C e-commerce website JingDong have shown the effectiveness of our proposed framework.
Resumo:
Energy efficiency is one of the most important performances of a wireless sensor network. In this paper, we show that choosing a proper transmission scheme given the channel and network conditions can ensure a high energy performance in different transmission environments. Based on the energy models we established for both cooperative and non-cooperative communications, the efficiency in terms of energy consumption per bit for different transmission schemes is investigated. It is shown that cooperative transmission schemes can outperform non-cooperative schemes in energy efficiency in severe channel conditions and when the source-destination distance is in a medium or long range. But the latter is more energy efficient than the former for short-range transmission. For cooperative transmission schemes, the number of transmission branches and the number of relays per branch can also be properly selected to adapt to the variations of the transmission environment, so that the total energy consumption can be minimized.
Resumo:
It is important to help researchers find valuable papers from a large literature collection. To this end, many graph-based ranking algorithms have been proposed. However, most of these algorithms suffer from the problem of ranking bias. Ranking bias hurts the usefulness of a ranking algorithm because it returns a ranking list with an undesirable time distribution. This paper is a focused study on how to alleviate ranking bias by leveraging the heterogeneous network structure of the literature collection. We propose a new graph-based ranking algorithm, MutualRank, that integrates mutual reinforcement relationships among networks of papers, researchers, and venues to achieve a more synthetic, accurate, and less-biased ranking than previous methods. MutualRank provides a unified model that involves both intra- and inter-network information for ranking papers, researchers, and venues simultaneously. We use the ACL Anthology Network as the benchmark data set and construct the gold standard from computer linguistics course websites of well-known universities and two well-known textbooks. The experimental results show that MutualRank greatly outperforms the state-of-the-art competitors, including PageRank, HITS, CoRank, Future Rank, and P-Rank, in ranking papers in both improving ranking effectiveness and alleviating ranking bias. Rankings of researchers and venues by MutualRank are also quite reasonable.
Resumo:
Recent modelling studies (Hadjipapas et al. [2009]: Neuroimage 44:1290-1303) have shown that it may be possible to distinguish between different neuronal populations on the basis of their macroscopically measured (EEG/MEG) mean field. We set out to test whether the different orientation columns contributing to a signal at a specific cortical location could be identified based on the measured MEG signal. We used 1.5deg square, static, obliquely oriented grating stimuli to generate sustained gamma oscillations in a focal region of primary visual cortex. We then used multivariate classifier methods to predict the orientation (left or right oblique) of the stimuli based purely on the time-series data from this one location. Both the single trial evoked response (0-300 ms) and induced post-transient power spectra (300-2,300 ms, 20-70 Hz band) due to the different stimuli were classifiable significantly above chance in 11/12 and 10/12 datasets respectively. Interestingly, stimulus-specific information is preserved in the sustained part of the gamma oscillation, long after perception has occurred and all neuronal transients have decayed. Importantly, the classification of this induced oscillation was still possible even when the power spectra were rank-transformed showing that the different underlying networks give rise to different characteristic temporal signatures. © 2009 Wiley-Liss, Inc.
Resumo:
Our method is presented with displaying time series, consisting of the daily amount of precipitation of 100 years, which has meant a separate challenge, as the precipitation data shows significant deviations. By nowadays, mankind has changed its environment to such an extent that it has a significant effect on other species as well. The Lepidoptera data series of the National Plant Protection and Forestry Light Trap Network can be used to justify this. This network has a national coverage, a large number of collected Lepidoptera, and an available, long data series of several years. For obtaining information from these data, the setting up of an easy to manage database is necessary. Furthermore, it is important to represent our data and our results in an easily analysable and expressive way. In this article the setting up of the database is introduced, together with the presentation of a three dimensional visualization method, which depicts the long-range and seasonal changes together.
Resumo:
Business angels are natural persons who provide equity financing for young enterprises and gain ownership in them. They are usually anonym investors and they operate in the background of the companies. Their important feature is that over the funding of the enterprises based on their business experiences they can contribute to the success of the companies with their special expertise and with strategic support. As a result of the asymmetric information between the angels and the companies their matching is difficult (Becsky-Nagy – Fazekas 2015), and the fact, that angel investors prefer anonymity makes it harder for entrepreneurs to obtain informal venture capital. The primary aim of the different type of business angel organizations and networks is to alleviate this matching process with intermediation between the two parties. The role of these organizations is increasing in the informal venture capital market compared to the individually operating angels. The recognition of their economic importance led many governments to support them. There were also public initiations that aimed the establishment of these intermediary organizations that led to the institutionalization of business angels. This study via the characterization of business angels focuses on the progress of these informational intermediaries and their ways of development with regards to the international trends and the current situation of Hungarian business angels and angel networks.
Resumo:
Pavement performance is one of the most important components of the pavement management system. Prediction of the future performance of a pavement section is important in programming maintenance and rehabilitation needs. Models for predicting pavement performance have been developed on the basis of traffic and age. The purpose of this research is to extend the use of a relatively new approach to performance prediction in pavement performance modeling using adaptive logic networks (ALN). Adaptive logic networks have recently emerged as an effective alternative to artificial neural networks for machine learning tasks. ^ The ALN predictive methodology is applicable to a wide variety of contexts including prediction of roughness based indices, composite rating indices and/or individual pavement distresses. The ALN program requires key information about a pavement section, including the current distress indexes, pavement age, climate region, traffic and other variables to predict yearly performance values into the future. ^ This research investigates the effect of different learning rates of the ALN in pavement performance modeling. It can be used at both the network and project level for predicting the long term performance of a road network. Results indicate that the ALN approach is well suited for pavement performance prediction modeling and shows a significant improvement over the results obtained from other artificial intelligence approaches. ^