995 resultados para inferior right hepatic vein
Resumo:
A precise knowledge of arterial, portal, hepatic and biliary anatomical variations is mandatory when a liver intervention is planned. However, only certain variations must be searched when a precise intervention is planned. The basic liver anatomy as well as the most relevant malformations will be precised.
Resumo:
The aberrant accumulation of lipids in the liver ("fatty liver") is tightly associated with several components of the metabolic syndrome, including type 2 diabetes, coronary heart disease, and atherosclerosis. Here we show that the impaired hepatic expression of transcriptional cofactor transducin beta-like (TBL) 1 represents a common feature of mono- and multigenic fatty liver mouse models. Indeed, the liver-specific ablation of TBL1 gene expression in healthy mice promoted hypertriglyceridemia and hepatic steatosis under both normal and high-fat dietary conditions. TBL1 deficiency resulted in inhibition of fatty acid oxidation due to impaired functional cooperation with its heterodimerization partner TBL-related (TBLR) 1 and the nuclear receptor peroxisome proliferator-activated receptor (PPAR) α. As TBL1 expression levels were found to also inversely correlate with liver fat content in human patients, the lack of hepatic TBL1/TBLR1 cofactor activity may represent a molecular rationale for hepatic steatosis in subjects with obesity and the metabolic syndrome.
Resumo:
Inhibitory control refers to the ability to suppress planned or ongoing cognitive or motor processes. Electrophysiological indices of inhibitory control failure have been found to manifest even before the presentation of the stimuli triggering the inhibition, suggesting that pre-stimulus brain-states modulate inhibition performance. However, previous electrophysiological investigations on the state-dependency of inhibitory control were based on averaged event-related potentials (ERPs), a method eliminating the variability in the ongoing brain activity not time-locked to the event of interest. These studies thus left unresolved whether spontaneous variations in the brain-state immediately preceding unpredictable inhibition-triggering stimuli also influence inhibitory control performance. To address this question, we applied single-trial EEG topographic analyses on the time interval immediately preceding NoGo stimuli in conditions where the responses to NoGo trials were correctly inhibited [correct rejection (CR)] vs. committed [false alarms (FAs)] during an auditory spatial Go/NoGo task. We found a specific configuration of the EEG voltage field manifesting more frequently before correctly inhibited responses to NoGo stimuli than before FAs. There was no evidence for an EEG topography occurring more frequently before FAs than before CR. The visualization of distributed electrical source estimations of the EEG topography preceding successful response inhibition suggested that it resulted from the activity of a right fronto-parietal brain network. Our results suggest that the fluctuations in the ongoing brain activity immediately preceding stimulus presentation contribute to the behavioral outcomes during an inhibitory control task. Our results further suggest that the state-dependency of sensory-cognitive processing might not only concern perceptual processes, but also high-order, top-down inhibitory control mechanisms.
Resumo:
Fungal symbionts commonly occur in plants influencing host growth, physiology, and ecology (Carlile et al., 2001). However, while whole-plant growth responses to biotrophic fungi are readily demonstrated, it has been much more difficult to identify and detect the physiological mechanisms responsible. Previous work on the clonal grass Glyceria striata has revealed that the systemic fungal endophyte Epichloë glyceriae has a positive effect on clonal growth of its host (Pan & Clay, 2002; 2003). The latest study from these authors, in this issue (pp. 467- 475), now suggests that increased carbon movement in hosts infected by E. glyceriae may function as one mechanism by which endophytic fungi could increase plant growth. Given the widespread distribution of both clonal plants and symbiotic fungi, this research will have implications for our understanding of the ecology and evolution of fungus-plant associations in natural communities.
Resumo:
OBJECTIVES: The reconstruction of the right ventricular outflow tract (RVOT) with valved conduits remains a challenge. The reoperation rate at 5 years can be as high as 25% and depends on age, type of conduit, conduit diameter and principal heart malformation. The aim of this study is to provide a bench model with computer fluid dynamics to analyse the haemodynamics of the RVOT, pulmonary artery, its bifurcation, and left and right pulmonary arteries that in the future may serve as a tool for analysis and prediction of outcome following RVOT reconstruction. METHODS: Pressure, flow and diameter at the RVOT, pulmonary artery, bifurcation of the pulmonary artery, and left and right pulmonary arteries were measured in five normal pigs with a mean weight of 24.6 ± 0.89 kg. Data obtained were used for a 3D computer fluid-dynamics simulation of flow conditions, focusing on the pressure, flow and shear stress profile of the pulmonary trunk to the level of the left and right pulmonary arteries. RESULTS: Three inlet steady flow profiles were obtained at 0.2, 0.29 and 0.36 m/s that correspond to the flow rates of 1.5, 2.0 and 2.5 l/min flow at the RVOT. The flow velocity profile was constant at the RVOT down to the bifurcation and decreased at the left and right pulmonary arteries. In all three inlet velocity profiles, low sheer stress and low-velocity areas were detected along the left wall of the pulmonary artery, at the pulmonary artery bifurcation and at the ostia of both pulmonary arteries. CONCLUSIONS: This computed fluid real-time model provides us with a realistic picture of fluid dynamics in the pulmonary tract area. Deep shear stress areas correspond to a turbulent flow profile that is a predictive factor for the development of vessel wall arteriosclerosis. We believe that this bench model may be a useful tool for further evaluation of RVOT pathology following surgical reconstructions.
Resumo:
Due to their relatively small size and central location within the thorax, improvement in signal-to-noise (SNR) is of paramount importance for in vivo coronary vessel wall imaging. Thus, with higher field strengths, coronary vessel wall imaging is likely to benefit from the expected "near linear" proportional gain in SNR. In this study, we demonstrate the feasibility of in vivo human high field (3 T) coronary vessel wall imaging using a free-breathing black blood fast gradient echo technique with respiratory navigator gating and real-time motion correction. With the broader availability of more SNR efficient fast spin echo and spiral techniques, further improvements can be expected.
Resumo:
Annual Report, Agency Performance Plan
Resumo:
BACKGROUND AND PURPOSE: MCI was recently subdivided into sd-aMCI, sd-fMCI, and md-aMCI. The current investigation aimed to discriminate between MCI subtypes by using DTI. MATERIALS AND METHODS: Sixty-six prospective participants were included: 18 with sd-aMCI, 13 with sd-fMCI, and 35 with md-aMCI. Statistics included group comparisons using TBSS and individual classification using SVMs. RESULTS: The group-level analysis revealed a decrease in FA in md-aMCI versus sd-aMCI in an extensive bilateral, right-dominant network, and a more pronounced reduction of FA in md-aMCI compared with sd-fMCI in right inferior fronto-occipital fasciculus and inferior longitudinal fasciculus. The comparison between sd-fMCI and sd-aMCI, as well as the analysis of the other diffusion parameters, yielded no significant group differences. The individual-level SVM analysis provided discrimination between the MCI subtypes with accuracies around 97%. The major limitation is the relatively small number of cases of MCI. CONCLUSIONS: Our data show that, at the group level, the md-aMCI subgroup has the most pronounced damage in white matter integrity. Individually, SVM analysis of white matter FA provided highly accurate classification of MCI subtypes.
Resumo:
You have a six-month open enrollment period when you are enrolled in Medicare Part B for the first time at age 65 or older. The six-month period begins the date your Medicare Part B begins. During your open enrollment period: • You cannot be turned down for any plan (A-L) being sold in Iowa. • You cannot be charged a higher premium based on your health. • You will not have a waiting period before benefits are paid for pre-existing health conditions IF you had previous health insurance coverage, AND you apply within 63 days of the end of previous health insurance, AND you were covered for at least 6 months under that health plan.
Resumo:
Dorsal and ventral pathways for syntacto-semantic speech processing in the left hemisphere are represented in the dual-stream model of auditory processing. Here we report new findings for the right dorsal and ventral temporo-frontal pathway during processing of affectively intonated speech (i.e. affective prosody) in humans, together with several left hemispheric structural connections, partly resembling those for syntacto-semantic speech processing. We investigated white matter fiber connectivity between regions responding to affective prosody in several subregions of the bilateral superior temporal cortex (secondary and higher-level auditory cortex) and of the inferior frontal cortex (anterior and posterior inferior frontal gyrus). The fiber connectivity was investigated by using probabilistic diffusion tensor based tractography. The results underscore several so far underestimated auditory pathway connections, especially for the processing of affective prosody, such as a right ventral auditory pathway. The results also suggest the existence of a dual-stream processing in the right hemisphere, and a general predominance of the dorsal pathways in both hemispheres underlying the neural processing of affective prosody in an extended temporo-frontal network.
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: The "Right-to-Cancel" Law - Know Your Rights!
Resumo:
The Attorney General’s Consumer Protection Division receives hundreds of calls and consumer complaints every year. Follow these tips to avoid unexpected expense and disappointments. This record is about: Purchases at Seminars: The Consumer's Right to Cancel
Resumo:
Portacaval shunted (PCS) rats, a model of hepatic encephalopathy, and control animals were administered racemic venlafaxine for 14 days (10 mg/kg). The levels of the S- and R-enantiomers and the S/R-enantiomer ratios of venlafaxine and its metabolites were assessed by an enantiomer-selective chromatographic assay in serum, brain parenchyma, and brain dialysate of both groups. Higher levels of the S- and R-enantiomers of venlafaxine were found in serum and brain of PCS vs. normal rats (median values of S- and R-venlafaxine in serum: 290 and 201 nM in PCS; 97 and 66 nM in normal rats; median values of S- and R-venlafaxine in cortex: 956 and 939 nM in PCS; 357 and 318 nM in normal rats). Interestingly, similar S/R-venlafaxine ratios were observed in PCS and normal rats both in serum (S/R = 1.4) and brain compartments (S/R = l.0-1.1). These findings may have clinical relevance for the safety of venlafaxine in chronic hepatic encephalopathy.
Resumo:
The liver segmentation system, described by Couinaud, is based on the identification of the three hepatic veins and the plane passing by the portal vein bifurcation. Nowadays, Couinaud's description is the most widely used classification since it is better suited for surgery and more accurate for the localisation and monitoring of intra-parenchymal lesions. Knowledge of the anatomy of the portal and venous system is therefore essential, as is knowledge of the variants resulting from changes occurring during the embryological development of the vitelline and umbilical veins. In this paper, the authors propose a straightforward systematisation of the liver in six steps using several additional anatomical points of reference. These points of reference are simple and quickly identifiable in any radiological examination with section imaging, in order to avoid any mistakes in daily practice. In fact, accurate description impacts on many diagnostic and therapeutic applications in interventional radiology and surgery. This description will allow better preparation for biopsy, portal vein embolisation, transjugular intrahepatic portosystemic shunt, tumour resection or partial hepatectomy for transplantation. Such advance planning will reduce intra- and postoperative difficulties and complications.